
 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

1

Project Number: 774571
Start Date of Project: 2017/11/01
Duration: 48 months

Type of document 3.2 – V1.0

Document title

Dissemination level PU
Submission Date 2020-04-30
Work Package WP3
Task T3:3
Type Report
Version 1.0
Author Emanuele Graziani, Silvia Samà, Renzo Fabrizo

Carpio
Approved by Andrea Gasparri + PMC

DISCLAIMER:
The sole responsibility for the content of this deliverable lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the REA nor the European Commission are
responsible for any use that may be made of the information contained therein.

Ref. Ares(2020)2307427 - 30/04/2020

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

2

Executive Summary

This document aims at providing a description of the design and implementation of the environment for data
management. In particular, the following aspects have been addressed in order to develop a data
management system that would meet the requirements of the proposed PANTHEON SCADA architecture:

I. Software Architecture;
II. Technological Solutions;

III. Data Model.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

3

Table of Content

1 Introduction .. 7

2 Software Architecture ... 8

2.1 Data Collection and Pre-processing Layer ... 9

2.2 Data Transfer Layer ... 10

2.3 Data Storage and Processing Layer ... 11

2.4 Edge and Cloud Data ... 12

2.5 Interface to GUI ... 13

2.6 Data flow ... 14

2.7 Data Acquisition procedures ... 15

2.7.1 UGV ... 15

2.7.2 UAV .. 17

2.7.3 IoT Network ... 19

3 Technological Solution .. 21

3.1 Database Management System .. 21

3.2 Data Format .. 22

3.2.1 JSON .. 22

3.2.2 GEOJSON ... 23

3.2.3 GEXF .. 26

3.3 Data Elaboration ... 27

3.3.1 ROS Communication .. 27

3.3.2 Acquisition Data Import .. 28

3.3.3 MEAN .. 29

3.3.4 Data Processing ... 30

4 Data Model .. 32

4.1 Introduction .. 32

4.2 Configuration ... 34

4.2.1 GeoObject ... 35

4.2.2 Platform ... 37

4.2.3 Sensor .. 38

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

4

4.3 Acquisition ... 41

4.3.1 Task ... 42

4.3.2 Trial .. 42

4.3.3 Campaign ... 42

4.3.4 Route ... 43

4.3.5 Waypoint ... 43

4.3.6 Position .. 44

4.3.7 Capture .. 44

4.3.8 Trigger ... 46

4.3.9 File ... 46

4.3.10 Content .. 48

4.3.11 Chain .. 48

4.3.12 Measurement .. 48

4.4 Agronomical activities ... 50

4.4.1 Activity ... 50

4.4.2 Mission .. 53

4.5 User application .. 55

4.5.1 Role ... 56

4.5.2 User ... 56

4.5.3 QualityParameter .. 56

4.5.4 QualityBand ... 56

4.5.5 PriceData ... 57

4.5.6 CultivationVariety .. 58

4.5.7 ChemicalProduct ... 58

4.5.8 Damage ... 59

4.5.9 DamageSolution .. 59

4.6 Embedded data ... 61

4.6.1 Comment ... 61

4.6.2 Log ... 61

4.7 Configuration data .. 63

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

5

4.7.1 Disease .. 63

4.7.2 Pest .. 64

4.7.3 Other damages .. 64

5 Appendix ... 65

5.1 Annex 1 - Complete data model schema .. 65

6 References ... 67

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

6

Abbreviations and Acronyms

AMGA Annotated Model Grant Agreement

BEN Beneficiary

BSON Binary JSON

CA Consortium Agreement

CO Coordinator

DCP Data Collection and Pre-processing

DSP Data Storage and Processing

DT Data Transfer

DoA Description of Action

EC European Commission

GEOJSON Geographic JSON

GEXF Graph Exchange XML Format

GUI Graphical User Interface

IOT Internet of Things

JSON JavaScript Object Notation

MEAN MongoDB, Express.js, Angular, Node.js

NAS Network Attached Storage

PR Periodic Report

ROS Robot Operating System

SyGMa System for Grant Management

TS Technical Staff

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

WP Work Package

XML eXtensible Markup Language

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

7

1 Introduction

One of the main objectives of PANTHEON is to support the decisions of agronomists and farmers leveraging
on the large quantity of data that is collected in an orchard by field-based sensors, weather stations, and
both terrestrial and aerial robots.

This is a typical scenario of big data analysis, which requires to address the following, well known, main V’s
challenges:

• Volume: the size of collected data increases fast and can rapidly become very large, reaching a
dimension that traditional database systems are not capable of managing and processing in an
efficient way;

• Velocity: Data are generated at high speed and, especially for monitoring purposes, need to be
processed in real-time, as soon as they arrive;

• Variety: data is produced by different systems, are heterogeneous by nature (e.g., records, images,
laser scans), and rely on different formats, but they need to be reconciled and integrated to provide
better insights to decision makers.

In order to consider all of these aspects, we need an environment for data analysis able to satisfy the
following technical requirements:

• It must be able to operate both in real-time, for the monitoring of plantations, and in batch mode,
for the processing of large collections of historical data oriented to predictive analysis and support
of strategic decisions;

• It must guarantee low latency (response time of an analysis query), high throughput (number of
operations performed over a period of time) and fault tolerance (reliability in case of software and
hardware malfunctions);

• It should allow the applications to scale smoothly when the volume of data increases rapidly,

In the rest of this document we will describe in detail the whole architecture and the main features of a
software system for data collection of analysis that we have designed and developed for PANTHEON, showing
how it satisfies all the above requirements.

The main aspects of the systems are the following:

• Data is distributed and replicated across computer clusters to ensure application scalability and to
increase fault tolerance and data availability;

• Data management and analysis is executed in a distributed processing environment relying on the
above-mentioned computer cluster;

• The data is stored in JSON, an open standard file format that provides the needed flexibility for
storing different types of data;

• MongoDB, a NoSQL document-oriented database program that natively store and manage data in
JSON format, is used as database management system: it guarantees the needed efficiency and
scalability in a distributed environment;

• Hardware and software resources are virtualized by adopting the cloud computing paradigm.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

8

2 Software Architecture

The architecture of the data collection and processing system capable of meeting the above requirements is
shown in schematic form in Figure 1 and is composed of three main components, which implement three
operational levels [1]:

• The “Data Collection and Pre-processing” layer (DCP layer in the following): this component is replicated
for each hazelnut field and is dedicated to the collection of data from the various sources located in the
field: sensors, weather stations, ground robots (UGV) and drones (UAV).

• The “Data Transfer” layer (DT layer in the following): this is a middleware that deals with the transfer of
data between the other two levels, in both directions, and between the overall system and the final
users of the software;

• The “Data Storage and Processing” layer (DSP layer or center in the following): it consists of a centralized
unit in which all the data coming from the various DCP components are stored and on which massive
analyses are carried out, mainly for knowledge extraction and decision support.

In the following, these three components will be described in more detail.

Figure 1 - The global architecture of the software system

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

9

2.1 Data Collection and Pre-processing Layer

Through a local communication network, the data coming from the collection nodes (sensors, weather
stations, UGV and UAV) will be conveyed to the local server located in the warehouse near the hazelnut
fields. The ROS protocol is used for data communication, as it is able to manage data transfers with all the
collection nodes mentioned above (including the IoT nodes via a gateway with the LoRa network) and is
based on the publish/subscribe mechanism, which allows the decoupling between data collection and data
processing. However, data can also be stored on the internal mass storage of the various devices and then
transferred manually to the local server. On the one hand, this guarantees the possibility of not losing
acquired data even in the event of a malfunction of the communication network and, on the other hand, this
guarantees the possibility of not occupying excessively the communication band, for example in the case of
acquisitions of large spectral images by the UGVs.

The local server acts as a first point of collection and management of all the data coming from one hazelnut
field. It is configured as a ROS node to communicate with the various collection nodes and will store data
using MongoDB, a NoSQL database system. This choice was dictated by the amount of data to be managed,
by their heterogeneity, and by the need to scale nicely as data volumes increase. MongoDB lends itself very
well to IoT applications, especially those framed in the smart-farming area. All raw data acquired from the
field will be stored on the database together with the result of data processing carried out locally or in the
data storage level, as described below.

More specifically, on this system will be carried out some pre-processing activities aimed at:

• carrying out operations of data cleaning and transformation, oriented for example to eliminate grossly
incorrect data and to standardize formats.

• carrying out pre-aggregations to reduce the amount of data to be transmitted to the DSP layer and to
make them more suitable for the analyses to be carried out.

• performing, through a local software application, monitoring activities on the collected data and provide
information to the farmers on the status of the field in real-time.

The local application will be Web-based, in order to be accessible using various types of devices and will be
developed using big data technologies for processing large quantities of data at high speed. This application
can be accessed directly by the operators in the field using the local server or using mobile devices, such as
tablets and smartphones. An Internet connection is not required to access the application since it operates
on the local database and so the network available in the field can be used for this purpose.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

10

2.2 Data Transfer Layer

Data exchange between the database, stored in the local server, and the central database, located in the DSP
layer, will occur using an Internet connection when available. If the area is not covered by an Internet
connection, a portable device equipped with a large mass storage device, called NAS (Network-attached
storage), will be used for data transfer. In this case, the NAS device will be physically transported from the
hazelnut field to the central database. Figure 2 shows the two communication scenarios: with and without
the presence of an Internet connection.

In both cases, only the data collected from the last data transfer (usually called ∆-data) is copied. In the first
scenario, ∆-data is directly transferred from the local to the central database and added to the “Global
Collected Data” (1). The results of data analysis carried out in the DSP center are stored in a special archive
called “Global Processed Data” (2). The results obtained from ∆-data (called “New Processed Data” in Figure
2 are transferred back to the local server (3) so that they can be exploited by users operating on the field
even when the DSP center is not directly accessible or the communication is low. In the second scenario, data
transfer needs an intermediate step involving the storage and the transport of ∆-data in NAS devices.

Figure 2 - Data exchange between the DCP and the DSP components.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

11

2.3 Data Storage and Processing Layer

The DSP center is equipped with a computer infrastructure that is based on a cluster of computers whose
nodes can be dynamically increased according to the requirements of storage and processing of the overall
application. These requirements are driven by: the volume of data to be stored, the data replication policies,
the physical distance between the DSP center and the hazelnut fields (e.g., located in different countries)
that can be relieved by geographical clustering, and the need to support high workloads of data processing.

The computing nodes of the cluster will be equipped with CPUs supporting parallel computation and with a
RAM and a mass storage of a size suitable for the overall needs of data storage and processing. All the
collected data will be also stored in a MongoDB database, in order to be easily exchanged with the databases
stored in local servers of the DCP layer. Data processing and analysis is activated at the DSP center when new
raw data arrives from the DCP layer. The results of data processing are stored in the database itself.

All these choices follow the so called “data lake” approach, in which a large repository is used for storing any
kind of data, coming from different sources and possibly heterogeneous, for later use, aimed usually at
knowledge extraction.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

12

2.4 Edge and Cloud Data

Pantheon architecture reflects a typical IoT (Internet of Things) architecture [2]. The system consists of a
centralized component (DSP Center) that resides in the Cloud (private server in this scenario) part and,
potentially, by many DCPs (one for each farm) representing the Edge nodes of the IoT system.

This structure allows to define two operating modes of the system, namely Farm Mode and Global Mode as
shown in Figure 3.

Figure 3 - Farm and Global mode schema

The operating mode is determined by the used database, specifically, if the user access to the farm database
(Edge node) the system works in Farm Mode, while if the user access to the central database the system
works in Global Mode.

As in IoT architectures, where only local information is kept in the Edge nodes, the data of the farm is stored
in the database of each farm. Instead, the central database collects data from all potential farms that are
part of the Pantheon system.

Unlike IoT systems, the Pantheon system continues to operate independently, on the single farm, even
without an Internet connection. The operating of the system, with this hybrid approach, is guaranteed by the
Data Transfer Layer described in previous paragraphs.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

13

2.5 Interface to GUI

PANTHEON system needs to make data available to the users and needs to store users input to the database.
This role is played by the user’s application, composed by front-end (GUI) and back-end elements.

Back-end receives requests from front-end. These requests get through web services functions that let both
sides transfer data in a secure and simple way. Several versions of web service features are available on
market nowadays. PANTHEON back-end will be compliant to REST protocols.

A web service is a web function that listens to new data arrival continuously and, when new requests have
been sent, transmits data to the software body to let it elaborate and reply. Reply modes can be synchronous
or asynchronous, meaning that, in the first option, service stays in pending status until the reply is ready to
be broadcast and, after sending operation is over, comes back to listening level, while in the second, listening
agent closes connection every time a new request is completed and returns ready to receive new requests.
Replies will be sent when ready through a different service (sender should be polling on another service after
request has been completed).

Front-end architecture requires that different services should be waiting for requests from front-end. These
services might be synchronous or asynchronous depending on front-end needs.

In order to send replies, back-end should interact with the data storage layer. The use of MongoDB drivers
will be necessary to complete that task. The back-end environment lets developers use a specific library that
can manage all the communication features with that specific database. So, any bidirectional interaction with
the database (storing or retrieving data) can be easily managed by resorting to this library. The back-end will
use this feature to manage required data and interact with selected databases through the MongoDB
universe.

The notification management of required information to the front-end is also in charge to the back-end. It
uses just a subscriber role in the ROS environment in this task. This means that when a notification that is
supposed to reach the front-end layer travels through the ROS communication environment, the back-end
should be able to catch it and deliver to the front-end properly. This can be accomplished by the back-end
ROS toolkit for the interaction with the ROS environment and using a web socket feature for sending data to
the front-end.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

14

2.6 Data flow

In the previous paragraphs, the system architecture was described focusing on data management. This
paragraph illustrates the flow of the data, from its acquisition to its processing.

In the diagram in Figure 4, it can be seen the path of the data through the various levels: Data source, Local
server, Analysis Server and Analysis (Processing).

Figure 4 - Acquisition data flow schema

The data is collected by the sensors, installed on the UAV and UGV platforms, during the acquisition missions.
In addition, weather station and soil sensors collect data continuously. All collected data are transferred to
the farm server and then transmitted to the central server. As described in previous sections, the data can
be transferred through the Internet connection, if any, or through a manual transport, using specific disks
(NAS). The data sent to the central server populate the database to which the analysis algorithms will access.
The elaborations are implemented by the processing chains that elaborate the raw data collected and
generate final data, which can be accessed by users through the application.

The following diagram, Figure 5, specifically shows the data transfer that takes place from the acquisition on
the field to the database, using ROS middleware.

Figure 5 - Collected data transferred with ROS middleware

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

15

2.7 Data Acquisition procedures

2.7.1 UGV
The data acquisition missions performed with UGV are composed by the following steps:

• Definition of purpose of mission, target trees, and path of the robot
• Deployment of robot on the field
• Initialization of the local DB and all scanning ROS nodes on the robot
• Scanning session
• Withdrawal of the robot from the field
• Exportation of capture files acquired during the scanning session
• Exportation of JSON files from the local DB with all capture metadata
• Loading of all data exported to the central server

The purpose of mission determinates target trees and sensors required during the data acquisition, and it
depends on the current season and expected task to reach. According to these requirements, it was
scheduled to meet the following timetable:

Date range Scan Sensors Field
15 Nov -15 Jan • Pre-pruning Tree Geometry

reconstruction (no leaves)
• Faro Focus-S70 Field 16

15 Feb - 15 Mar • Pre-pruning Tree Geometry
reconstruction (no leaves)

• Faro Focus-S70 Field 16

20 Apr -30 Apr • Sucker detection • Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 18

1 May -15 May • Tree Geometry reconstruction
(with leaves)

• Faro Focus-S70 Field 16

20 May - 30 May • Sucker detection
• Pest and Disease detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 18

10 Jun - 20 Jun • Pest and Disease detection
• Water stress detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

20 Jun -30 Jun • Sucker detection
• Pest and Disease detection
• Water stress detection
• Fruit detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

10 Jun – 20 Jul • Pest and Disease detection
• Water stress detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

20 Jul - 30 Jul • Sucker detection
• Pest and Disease detection
• Water stress detection
• Fruit detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

16

10 Aug -20 Aug • Pest and Disease detection
• Water stress detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

20 Aug -30 Aug • Sucker detection
• Pest and Disease detection
• Water stress detection
• Fruit detection

• Faro Focus-S70
• Sony a5100
• MicaSense RedEdge-M

Field 16, Field 18

After the deployment of robot, the global planner [3] generates the path of the robot composed by a set of
waypoints to reach. The latter requires as input the target trees to elaborate the path for the current
campaign, after this step the set of waypoints is saved in the collection “Waypoints” on the local DB onboard
the robot.
The scanning system establishes communication with the local DB to coordinate the current waypoint to
reach, and to save each time the current waypoint and all metadata generated during the scanning session.
At the beginning, the scanning system generates only one time a campaign element in the collection
“Campaigns”.
During the scanning session, every time the robot gets stopped on the current waypoint, the scanning system
saves a position element on the collection “Positions”, then based on the field parameter takes a set of 3-6
scans with Sony a5100 and MicaSense RedEdge-M and only one scan with the Faro Focus-S70.
On each waypoint the scans can be organized in 2 different conceptual levels:

• Scan level
• Sensor level

At scan level, the scanning system saves 2*N capture elements on the collection “Captures” for the Sony
a5100 and MicaSense RedEdge-M, where N depends on the size of tree (e.g. 3 for young trees and 6 for the
adult ones). In addiction at this level the scanning system saves only one element on the collection “Captures”
for Faro Focus-S70.
At sensor level, the scanning system saves one file element for each capture of Sony a5100, 5 file elements
for each capture of Micasense RedEdge-M, and one file element for Faro Focus-S70 on the collection “Files”.
Following there is a table about the estimation size of dataset acquired by the sensors:

scans # trees* Size of Sony a5100
dataset

Size of MicaSense
RedEdge-M dataset

Size of Faro Focus-S70
dataset

1 0 156MB (1*6*1*26MB) 75MB (5*6*1*2.5MB) 54MB (1*1*1*54MB)
4 1 624MB (1*6*4*26MB) 300MB (5*6*4*2.5MB) 216MB (1*1*4*54MB)
6 2 936MB (1*6*6*26MB) 450MB (5*6*6*2.5MB) 324MB (1*1*6*54MB)
8 3 1248MB (1*6*8*26MB) 600MB (5*6*8*2.5MB) 432MB (1*1*8*54MB)
10 4 1560MB (1*6*10*26MB) 750MB (5*6*10*2.5MB) 540MB (1*1*10*54MB)
22 10 3432MB (1*6*22*26MB) 1650MB (5*6*22*2.5MB) 1188MB (1*1*22*54MB)

*assuming that trees are contiguous and on the same line in the adult field.

The estimation of the dataset size is based on the following equation:

• (#files)*(#captures)*(#scans)*size = dataset size

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

17

After finishing the scanning session, all sensor data is archived on a specific folder in the file system, all meta
data required can be exported as JSON files from the local DB. The data transfer to the server currently is
done manually.

2.7.2 UAV
The UAV platform, with 3 different sensors, provides data for the tasks related to the water stress and the
pest and disease detection. In this regard, the data collection plan for the UAV starts at the beginning of May
and lasts until October, when the last mission is performed.

During the campaign period, both tasks require at least one day of sensing activities per month. The number
of flights performed per mission depends on the purpose of the mission. A water stress mission implies the
performance of several flights during the day, starting after the sunrise and finishing one hour before the
sunset. Namely, an ideal water stress mission involves 5 flights during the day:

1. an hour after sunrise
2. 09:00
3. 12:00
4. 15:00 GMT
5. an hour before sunset

where the area covered is denoted as area 2 in Figure 6.

Differently, a pest and disease mission only requires a single flight covering area 1 of Figure 6. The ideal time
for this activity is at 12:00 GMT.

Remark: Modifications to this ideal plan may be carried out to comply with the legal and logistic constraints,
for instance reducing the test area or the number of flights.

The 3 sensors installed on the UAV platform are:
• Tetracam MCAW 6, a Multispectral camera
• Sony a5100, an RGB camera

Figure 6 - Area division for the UAV remote sensing activities.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

18

• Teax ThermalCapture 2.0, a thermal camera.

After each remote sensing flight, the data generated comes from the raw data collected by the 3 sensors and
the data associated to each capture (position, velocity, orientation, etc.), required for the postprocessing
activities.

The associated data is generated based on the information sent by the ROS node of the flight controller to
the onboard computer. This information is locally stored in a lightweight file, called acquisition.txt. This file
includes the information provided by the navigation sensors of the UAV regarding the pose of the UAV at
each capture ('Lat','Lon','Alt','Roll','Pitch','Yaw'), the information of the relative position of the gimbal
('GimbalRoll','GimbalPitch','GimbalYaw') and the sensors triggered ('Command'). Once the mission is
finished, these raw measurements are extracted and processed as metadata.

The installed cameras provide the following type of data:

• Tetracam MCAW 6: .TIFF files with a size of 15 mb/picture.
• Sony a5100: .TIFF files with a size of 12-13 mb/picture.
• Teax ThermalCapture 2.0: .TMZ files with a size of 3-4 mb/picture.

Depending on the parameters selected for a given flight, the number of images obtained may ostensibly vary.
Parameters such as altitude or overlap significantly affect to the data collected by a single flight.

In this regard, subject to the data processing requirements, standard parameters consider an altitude of 30-
40 meters and an image overlap superior to the 80%. This configuration provides the following amount of
data per flight:

• Number of images: 100-110 images.
• Generated data:

I. Tetracam MCAW 6: 1.5-1.65 GB
II. Sony a6100: 1.2-1.3 GB

III. Theax ThermaCapture 2.0: 0.3-0.4 GB
• Total per flight: 3-3.35 GB.

This implies a generation 15-16.75 GB per mission in the case of water stress and 3-3.35 GB in the case of
pest and disease detection, considering that both kind of flights cover areas of similar size. Note that the
additional data associated to each image is not included in the computation given the great difference in size.

As a result of the large number of images obtained during each flight and the high frequency between
triggers, the data captured by each sensor is locally stored on each camera during the flight. This procedure
avoids possible interruption or delays on the transmission of data during the activity. On the other hand, as
mentioned, the data related to the position and behavior of the UAV is stored on the onboard computer of
the UAV.

Once the mission is finished, the data of each sensor is collected manually and transferred to the local server.
This methodology has been proven to be the most efficient procedure given the large amount of data
generated and the field conditions.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

19

2.7.3 IoT Network
The IoT network based on the LoRa communication protocol provides data about the weather and
atmospheric changes over time. It consists on the following modules:

• Meteorological station
• 9 LoRa nodes
• LoRa gateway of the network
• WebSite

The meteorological station acquires cyclically every 5 minutes several environmental variables: precipitation,
wind direction and wind speed, air temperature, relative humidity, air pressure and solar radiation.
LoRa nodes represent peripheral units installed in the field for the acquisition of high-resolution soil moisture
and temperature data, which collect at two depths, using capacitive SDI12 sensors. Nodes are based on a
Teensy microcontroller that uses a 72 MHz Cortex-M4 processor and an RF transceiver module RFM95W that
features an LoRaTM long range modem at 868 MHz.
The LoRa gateway is based on Raspberry Pi 3b+ with Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC
@ 1.4GHz, 1GB RAM, an Ethernet Port, a WiFi module, a LoRa RFM95W module and a high gain antenna for
receiving data sent from the nodes.
The LoRa gateway collects data from the sensors and send them to the Gateway, which is responsible for
loading on the WebSite and converting data into the ROS standard for storage in the primary DB server.
The data transmission of the system is based on 2 binaries: DATA PRODUCER (gw) and DATA CONSUMER
(gw_wifi). The former collects all data from the LoRa network and save it on a specific folder. After this step,
it also updates the queue in the file “queue.txt”. Every 20 minutes, the latter looks for new data in the queue,
and if it finds new data, it consumes it. The consuming action consists in sending all new data collected to
the server online and cleaning the queue. A Locking Advisory Mechanism has been implemented to manage
the access to the queue.

Data type and format of string send by the nodes:

• ID,TIMESTAMP,LAT,LON,ALT,N_SENSORS,SOIL_0_WM,SOIL_0_TEMP,SOIL_0_WM_N,SOIL_0_TEMP
_N,SOIL_1_WM,SOIL_1_TEMP,SOIL_1_WM_N,SOIL_1_TEMP_N,BATT_5V,BATT_12V,COUNTER,ACQ
UISITION_FREQ,N_SEND,DELAY,GPS_FIX,RETRY,RESET

where
• ID – ID of the node
• TIMESTAMP – timestamp
• LAT – latitude
• LON – longitude
• ALT – altitude
• N_SENSORS – number of sensors
• SOIL_0_WM – wm sensor 0 (mean)
• SOIL_0_TEMP – temperature sensor 0 (mean)
• SOIL_0_WM_N – number of samples for the mean of wm sensor 0
• SOIL_0_TEMP_N – number of samples for the mean of temperature sensor 0
• SOIL_1_WM – wm sensor 1 (mean)
• SOIL_1_TEMP – temperature sensor 1 (mean)
• SOIL_1_WM_N – number of samples for the mean of wm sensor 1

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

20

• SOIL_1_TEMP_N – number of samples for the mean of temperature sensor 1
• BATT_5V – remaining battery voltage if powered by 5V
• BATT_12V – remaining battery voltage if powered by 12V
• COUNTER – counter used to make unique the current string
• ACQUISITION_FREQ – rate of data acquisition of the sensor in minutes
• N_SEND – number of cycles before sending the string
• DELAY – delay of sending based on the ID of the node (e.g. delay of TN_02 is 1, etc.)
• GPS_FIX – checks if the node has the GPS fix
• RETRY – number of transmission attempts before receiving the ack from the LoRa gateway (max 9)
• RESET – checks if the node has been restarted

Example of a string from the node TN_01:

• TN_01,20200428000005,42.2799,12.2985,262.6,2,0.228,16.700,1,1,0.241,15.300,1,1,3.35,0.01,
19731,5,1,0,1,1,0

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

21

3 Technological Solution

In this section we illustrate the software tools that we have chosen to implement the architecture described
in the previous section.

3.1 Database Management System

MongoDB is a general purpose, document-based, distributed database built for modern applications in
distributed environments.

The main features of MongoDB are the following:

• It stores data in flexible, JSON-like documents, where fields can vary (from textual data to images)
and data structure can be changed over time;

• It adopts a document model that maps to the objects in the application code, making data easy to
work with;

• It supports ad hoc queries, indexing, and real time aggregation, thus providing powerful ways to
access and analyze data;

• It is a distributed database at its core, so high availability, horizontal scaling, and geographic
distribution are built-in and easy to use.

Figure 7 - The main components of MongoDB

As described in Figure 7, MongoDB relies on three main components:

• The Data Layer, a general purpose OLTP database storage system designed to serve operational and
real-time analytics workloads;

• The Application Development, which helps the developers to build full-stack applications faster by
providing easily configurable rules for accessing data directly from the application front-end, along
with serverless functions to execute application logic.

• The Client-Side Database, which provides a support for complex queries, safe threading, responsive
user interfaces, encryption, and cross-platform adoption.

FigurFigure 1:e 1: The MongoDB Data Platform

• Demands for higher developer productivity and faster

time to market – with release cycles compressed to

days and weeks – are being held back by rigid relational

data models, legacy technologies, waterfall

development, and organizational silos.

• The inability to manage massive increases in new,

rapidly changing data types – structured,

semi-structured, and polymorphic data generated by

modern web, mobile, social, AI, and IoT applications. This

is coupled with the inability to unlock value from that

data wherever it is stored – on devices, in operational

databases, and in vast repositories in the cloud.

• DifTculty in exploiting the wholesale shift to mobile

platforms and cloud computing.

MongoDB has responded to these challenges by creating

a data platform built around three core design principles

that collectively enable you to build faster, and with higher

quality:

1. The document data model – presenting you with thethe

best way to work with datbest way to work with dataa.

2. A distributed systems design – allowing you to

intelligently put datintelligently put data whera where you want ite you want it.

3. A uniTed experience that gives you the frfreedom to runeedom to run

anywheranywheree – allowing you to future-proof your work and

eliminate vendor lock-in.

In this Guide, we provide an overview of the MongoDB data

platform and its underlying architecture.

The MongoDB Data Platform

To build modern apps, developers need to be able to work

with data wherever it lives – in both the client and in the

data layer at the backend, with Tne-grained access

controls, seamless synchronization and reactive

event-handling as data moves between each layer of the

stack.

Data Layer

The MongoDB Server is a general purpose OLTP database

designed to serve operational and real-time analytics

workloads.

• Wherever you are thinking about using a relational

database, you should consider MongoDB.

• Wherever you are thinking about using a NoSQL

database, you should consider MongoDB.

Whether you plan to run your apps in your own facilities, as

a serverless, cloud-native solution, or with a hybrid

deployment model in between, MongoDB provides

complete infrastructure agility. You can run MongoDB

yourself on your own infrastructure, or use MongoDB Atlas,

2

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

22

In contrast to the tabular data model used by relational databases, MongoDB uses the document data model.
Documents are a much more natural way to represent data: they present a single structure, with related data
embedded as sub-documents and arrays, collapsing tables linked by foreign keys in a relational database.

Beyond ease-of-use, documents have many other key properties that improve developer productivity:

• Schemas can be modified at any time, allowing us to continuously integrate new application
functionality, without wrestling with complex schema migrations. With Schema Validation, we have
the option to enforce a schema against the data, ensuring the presence of mandatory fields,
permissible values, and appropriate data types.

• Documents in a collection (analogous to a table in a relational database) can have different structures
compared to other documents in the same collection.

• Data can be modeled in any way the application demands it – from rich, hierarchical documents
through to flat, table-like structures, simple key-value pairs, text, geospatial data, and the nodes and
edges used in graph processing.

Finally, MongoDB provides an expressive query language, secondary indexes, and aggregation pipeline that
allows us to query data in different ways: from simple lookups and range queries to sophisticated processing
pipelines for data analytics and transformations, through JOINs, geospatial processing, on-demand
materialized views, and graph traversals.

3.2 Data Format

3.2.1 JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and
write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript Programming
Language Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family of languages, including
C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-
interchange language.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one form
or another. It makes sense that a data format that is interchangeable with programming languages also be
based on these structures.

As JavaScript became the default language of client-side web development, JSON began to take on a life of
its own. By virtue of being both human- and machine-readable, and comparatively simple to implement
support for in other languages, JSON quickly moved beyond the web page, and into software everywhere.

JSON shows up in many different cases:

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

23

• APIs

• Configuration files

• Log messages

• Database storage

JSON quickly overtook XML, is more difficult for a human to read, significantly more verbose, and less ideally
suited to representing object structures used in modern programming languages.

JSON and MongoDB

MongoDB was designed from its inception to be the ultimate data platform for modern application
development. JSON ubiquity made it the obvious choice for representing data structures in MongoDB
innovative document data model [4].

However, there are several issues that make JSON less than ideal for usage inside of a database.

1. JSON is a text-based format, and text parsing is very slow

2. JSON readable format is far from space-efficient, another database concern

3. JSON only supports a limited number of basic data types

In order to make MongoDB JSON-first, but still high-performance and general-purpose, BSON was invented
to bridge the gap: a binary representation to store data in JSON format, optimized for speed, space, and
flexibility. It is not dissimilar from other interchange formats like protocol buffers, or thrift, in terms of
approach.

MongoDB stores data in BSON format both internally, and over the network, but that does not mean
MongoDB cannot be thought as a JSON database. Anything that can be represented in JSON can be natively
stored in MongoDB and retrieved just as easily in JSON.

In PANTHEON, JSON is the main format used to model and manage data from acquisition task to the end-
user GUI.

3.2.2 GEOJSON
GeoJSON is a JSON based format designed to represent the geographical features with their non-spatial
attributes. This format [5] defines different JSON (JavaScript Object Notation) objects and their joining
fashion. JSON format represents a collective information about the Geographical features, their spatial
extents, and properties. An object of this file may indicate a geometry (Point, LineString, Polygon), a feature
or collection of features. The features reflect addresses and places as point’s streets, main roads and borders
as line strings and countries, provinces, and land regions as polygons. Using the GeoJSON, different mobile
routing and navigation applications can indicate the coverage of their services.

Following the GeoJSON specification.

Coordinate
Coordinate is the basic element of any geographic data. This is a single dimension (Longitude, latitude)
representing a single number (decimal format) and sometimes record a coordinate for elevation too. Time is

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

24

a dimension too, but its complexity makes it difficult to record it as coordinate. Coordinates in both JSON
GeoJSON are formatted like numbers.

Position

An ordered array of coordinates represents the position. This is the smallest unit that can indicate a point on
earth.

[Longitude, latitude, elevation]

Before the release of the current specification, GeoJSON allowed to record three coordinates per position
but is not allowed by the new specification.

Geometry

Geometries are simple shapes (points, curves, and surfaces) in GeoJSON which consist of a type and a
collection of coordinates. Point is the simplest geometry that represents a single position

{"type": "Point", "coordinates": [0, 0]}

LineStrings

At least two connected places are used to represent a line.

{"type": "LineString", "coordinates": [[10, 30], [10, 10]]}

Point and line strings are the two simplest categories of geometry. Both types of geometry don’t bother many
geometric rules. A point can be represented in a place anywhere, and a line can have more than one points,
even if the points are self-crossing.

Polygons

GeoJSON geometries seem significantly more complex in Polygons. Polygons have insides & outsides areas
and can possess holes in that inside.

{
 "type": "Polygon",
 "Coordinates": [
 [
 [30, 10], [10, 10], [10, 0], [20, 40]
]
]
}

As compare to LineStrings, in polygons, the list of coordinates is one more level nested and can have cut-outs
like donuts.

Coordinate Level

In GeoJSON format, for the coordinate property, there are four ‘levels of depth’.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

25

Features

Geometries are the central part of GeoJSON, therefore, the real-world data is more than theses simple shapes
having identity and attributes. Features records the geometry as well as their properties.

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [20, 10]
 },
 "properties": {
 "name": "fortune island"
 }
}

A feature property can be a type of JSON object contain single-depth key-value mappings.

FeatureCollection

At the top level of GeoJSON files, FeatureCollection is the most common thing that looks like:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [20, 10]
 },
 "properties": {
 "name": "null island"
 }

Points

MultiPoints & LineStrings

MultiLineStrings & Polygons

MultiPolygon

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

26

 }
]
}

A lot of mapping and GIS software packages support GeoJSON including GeoDjango,
OpenLayers, and Geoforge software. It is also compatible with PostGIS and Mapnik. The API services
of Google, yahoo and Bing maps also support GeoJSON.

In PANTHEON, GeoJSON is used as data representation format for geographical attribute of all the elements
deployed in the field, like trees, terrain areas, sensors, UAV and UGV.

3.2.3 GEXF
Graph file written in the GEXF (Graph Exchange XML Format) language, a language used for describing
network structures; specifies the nodes and edges of the graph as well as user-defined attributes such as
node weights or edge directions; can be used as an interchange format between graphing applications.

Basic topology: a GEXF file aims to represent one and only one graph.

This is a minimal file for a static graph containing 2 nodes and 1 edge between them:

<?xml version="1.0" encoding="UTF-8"?>
<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
 <graph mode="static" defaultedgetype="directed">
 <nodes>
 <node id="0" label="Hello" />
 <node id="1" label="Word" />
 </nodes>
 <edges>
 <edge id="0" source="0" target="1" />
 </edges>
 </graph>
</gexf>

Associated data: GEXF provides a way to add data and meta-data to topology elements.

A bunch of data can be stored within attributes. The concept is the same as table data or SQL. An attribute
has a title/name and a value. Attribute's name/title must be declared for the whole graph. It could be for
instance "degree", "valid" or "url". Besides the name of the attribute a column also contains the type. Some
meta-data can be set to the graph, like the creator's name, the date of creation, or a description.

Dynamics: GEXF provides a way to add a lifetime to nodes, edges and data.

Time in GEXF is encoded in two ways. Continuous by default, it is encoded as a double, but may also be an
international standard date (yyyy-mm-dd). Discrete, it is an integer. Both network topology and data have a
lifetime. The whole graph, each node, each edge and their respective data values may have time limits,
beginning with an XML-attribute start and ending with end. Attributes declared as dynamic can exist during
a time scope.

Hierarchy: clustering can be stored inside a hierarchy of nodes.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

27

There are 2 ways to write a hierarchy in GEXF, depending on how data is processed:

• Sequential-safe Reading: nodes can simply host other nodes and so on.

• Random Writing: each node refers to a parent node id with the XML-attribute pid.

The first style is preferred when the structure written is previously ordered. Sequential reading of this kind
of GEXF is safe because no node reference is used. But in the case the used program cannot provide it, the
second way allows writing (and then reading) nodes randomly, but linear reading can be less straightforward.

Visualization: this module is an extension using a different namespace. It provides attributes for coloring in
RGB, positioning inside a 3D space, setting size, color, position and shape of nodes and edges.

In PANTHEON, the GEXF file format is used to model the tree geometry and visualize the 3D representation
on the end-user application.

3.3 Data Elaboration

3.3.1 ROS Communication
Here we will explore some of the main components of ROS [6]. One of the primary purposes of ROS is to
facilitate communication between the ROS nodes. These nodes represent the executable code. The code
can reside entirely on one computer, or nodes can be distributed between computers or between computers
and robots. The advantage of this distributed structure is that each node can control one aspect of a system.

For example, one node can capture the images from a camera and send the images to another node for
processing. After processing the image, the second node can send a control signal to a third node for
controlling a robotic manipulator in response to the camera view.

The main mechanism used by ROS nodes to communicate is by sending and receiving messages. The
messages are organized into specific categories called topics. Nodes may publish messages on a topic
or subscribe to a topic to receive information.

ROS Nodes

Basically, nodes are processes that perform some computation or task. The nodes themselves are really
software processes but with the capability to register with the ROS Master node and communicate with other
nodes in the system. The ROS design idea is that each node is independent and interacts with other nodes
using the ROS communication capability.

One of the strengths of ROS is that a task, such as controlling a wheeled mobile robot, can be separated into
a series of simpler tasks. The tasks can include the perception of the environment using a camera or laser
scanner, map making, planning a route, monitoring the battery level of the robot's battery, and controlling
the motors driving the wheels of the robot. Each of these actions might consist of a ROS node or a series of
nodes to accomplish the specific tasks.

A node can independently execute code to perform its task but can also communicate with other nodes by
sending or receiving messages. The messages can consist of data, commands, or other information necessary
for the application.

ROS Topics

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

28

Some nodes provide information for other nodes, as a camera feed would do, for example. Such a node is
said to publish information that can be received by other nodes. The information in ROS is called a topic.
A topic defines the types of messages that will be sent concerning that topic.

The nodes that transmit data publish the topic name and the type of message to be sent. The actual data is
published by the node. A node can subscribe to a topic and transmitted messages on that topic are received
by the node subscribing.

Continuing with the camera example, the camera node can publish the image on
the “camera/image_raw” topic. Image data from the “camera/image_raw” topic can be used by a node that
shows the image on the computer screen. The node that receives the information is said to subscribe to the
topic being published, in this case “camera/image_raw”.

In some cases, a node can both publish and subscribe to one or more topics.

ROS Messages

ROS messages are defined by the type of message and the data format. The ROS package named “std_msgs”,
for example, has messages of type “String” which consist of a string of characters. Other message packages
for ROS have messages used for robot navigation or robotic sensors.

In PANTHEON, the ROS communication features are used to exchange data between the data acquisition
sensors and the Farm server.

3.3.2 Acquisition Data Import
During the project, many data acquisition sessions are performed on the field. This activity is carried out for
testing purposes and for collecting real data of the project.

In addition, this allows to have a real basic dataset on which develop all the components involved in data
management. In particular, the data acquired with the UAV and UGV platforms are stored inside a SD Cards
installed on board. Then, the data is transferred to the local server's file system (or alternatively to the central
server file system).

Regarding file system management, a specific folder structure has been defined to catalogue all the collected
data, grouped by dates on which the acquisition missions were performed, by platform type, by sensor type,
etc. In Figure 8 there is a sample screenshot of the structure used.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

29

Figure 8 - Screenshot of the FTP folder structure

A dedicated Python script has been developed for the last step of data transferring to the system database
(MongoDB). The script allows, automatically, to parse the metadata and the acquisitions from the file system
and import the data into the database collections. The import algorithm can be executed whenever new
acquired data is inserted into the file system. The flow is represented in following Figure 9.

Figure 9 - Acquisition data flow schema

3.3.3 MEAN
MEAN (MongoDB, Express.js, AngularJS (or Angular), and Node.js) is a free and open-source JavaScript
software stack for building dynamic web sites and web applications [7].

ACQUISITION DATA FLOW

PLATFORM ONBOARD
STORAGE

SERVER
FILE SYSTEM

DATA IMPORT
SCRIPT DATABASE

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

30

Because all components of the MEAN stack support programs that are written in JavaScript, MEAN
applications can be written in one language for both server-side and client-side execution environments.

Though often compared directly to other popular web development stacks such as the LAMP stack, the
components of the MEAN stack are higher-level including a web application presentation layer and not
including an operating system layer.

Main components of the stack (composing acronyms) are the following:

• MongoDB: is a NoSQL database program that uses JSON-like BSON (binary JSON) documents with
schema. The role of the database in the MEAN stack is very commonly filled by MongoDB because its
use of JSON-like documents for interacting with data as opposed to the row/column model allows it to
integrate well with the other (JavaScript-based) components of the stack.

• Express.js: (also referred to as Express) is a modular web application framework package for Node.js.
Whilst Express can act as an internet-facing web server, even supporting SSL/TLS out of the box, it is
often used in conjunction with a reverse proxy such as NGINX or Apache for performance reasons.

• Angular and alternatives: typically data is fetched using Ajax techniques and rendered in the browser on
the client-side by a client-side application framework, however as the stack is commonly entirely
JavaScript-based, in some implementations of the stack, server-side rendering where the rendering of
the initial page can be offloaded to a server is used so that the initial data can be prefetched before it is
loaded in the user's browser. Angular (MEAN), React (MERN) and Vue.js (MEVN) are the most popular
amongst other web application frameworks used in the stack and a number of variations on the
traditional MEAN stack are available by replacing the web application framework with similar
frameworks, or even by removing this component of the stack altogether (MEN).

• Node.js: is the application runtime that the MEAN stack runs on. The use of Node.js which is said to
represent a "JavaScript Everywhere" paradigm is integral to the MEAN stack which relies on that
concept.

The concept of the MEAN stack technology is to allow developers in developing more responsive apps with
a single language at all the platforms.

MongoDB database imparts a splendid similarity to different databases; however, it is composition less which
makes additions and deletions very simple. This factor and element of the MEAN stack development tool
completely avoid complications and terminations while working with a big data. It is truly a complex task to
deal with data isolated into tables and columns in SQL databases. This capacity similarly makes MEAN based
development synchronized with cloud and cloud-based applications. Therefore, the cloud-based apps can be
easily developed and presented to the cloud network.

In PANTHEON, MEAN stack is used in the implementation of the end-user application. That application works
directly with the system database (MongoDB). In this scenario, the back-end component exchange data with
MongoDB in JSON format and expose the data management functionalities to the front-end component
through REST APIs.

3.3.4 Data Processing
The data associated with remote sensing tasks are typically processed via Python [8]. For each task, one or
many processing chains in form of python scripts are created. In general, such a script connects to MongoDB,

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

31

queries the data it needs, processes or analyses the data and writes back the results to the database. The
core Python libraries used to process the data are OpenCV [8] [9] [10] [11] and scikit-learn [12]. A processing
chain might also pass tasks to command line scripts, e.g. to convert files, if required.

• OpenCV: OpenCV is used as a tool to perform image processing in Python. In particular, the images
of the multispectral UGV cameras are aligned with the 3D (three-dimensional) laser scans. To enable
this, OpenCV functions are used to calibrate the intrinsic and extrinsic sensor orientation.

• Metashape: Agisoft Metashape is used to generate orthomosaics using multispectral UAV images
photogrammetricly processing of digital images and generates 3D spatial data. Its Python interface
[TODO citation AgisoftLLC_2020b] allows for a smooth integration into PANTHEONs architecture.

• PyMongo: PyMongo represents a Python driver for MongoDB. It is used to query and write data for
tasks associated with data processing.

• Pyoints: Pyoints is used as a tool to deal with various representations of 2D and 3D geodata in Python.
In particular, the laser scan alignment and various functions to deal with the UGV data is
implemented using Pyoints.

• scikit-learn: The Python module scikit-learn is used in particular for machine-learning based tasks. In
particular, classification, clustering and regression is performed using this module.

To make a processing chain available to other applications, each script is linked to a “Chain” object stored in
the “chains” collection of MongoDB. This allows for a live triggering of the chain by other applications. In
particular, the configuration of the chain is passed to the script. This concept enables dynamical adding of
processing chains to PANTHEONs architecture, without having to modify e.g. the front-end.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

32

4 Data Model

4.1 Introduction

The Pantheon project database includes various groups of tables used to store large amounts of data for
homogeneous purposes.

It supports both the data acquisition processes, performed by the various platforms (UAV, UGV, weather
station, human and soil sensor), and the data processing processes that determine the data on the state of
the trees and the agronomic activities to be performed.

They also support the functionality of the web application. Following, in Figure 10, there is the synthetic
version of the scheme that represents only the collections and their references, for the complete schema
details, with all the attributes, see the individual sections or appendix section 5.1.

The colour of the collection represents the group the collection is part of.

In the next sections, grouped by homogeneous function, the individual collections will be described in detail.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

33

Figure 10 - Synthetic full data model schema

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

34

4.2 Configuration

These collections, shown in Figure 11, need to store the structure of the field and the geo-located elements
that can be used as targets of operations and activities.

In addition, there are platforms and sensors used in the system to perform data acquisition.

Figure 11 - Configuration group elements of the data model schema

<<captures>>
Capture

Describes the orientation of a sensor in the moment of
triggering

+id_sensor: String
Sensor of the capture

<<files>>
File

File or product meta data
+id_sensor: String (optional)
The sensor the file has created (if
applicable)

+id_target: String (optional)
Reference to GeoObject element

<<campaigns>>
Campaign

Groups a collection of positions of a
specific measurement day

+id_platform: String
Unique identifier of the platform used

+locations: List of String
Coarse location of the campaign. Reference
to GeoObject elements

<<platforms>>
Platform

Describes a specific robot or generic
platform

+id: String
Name of the robot. E.g. "UGV", "UAV" or
"weather_station"

+created: Datetime
Creation time in UTC format

+type: String
Platform type. E.g. UAV, UGV, MeteoStation

+movable: Boolean
If platform is fixed or moovable

+initial_position: jsonObject (opt)
GPS position of the platform in degree.
Defined only for fixed platform

1

n

n

<<sensors>>
Sensor

Sensor types. A sensor might also be a human
expert

+id: String
Unique identifyer of the sensor. E.g.
"MicaSense RedEdge-M"

+created: Datetime
Creation time in UTC format

+type: String
Type of sensor. E.g: multispectral, human,
temperature

+id_platform: String (optional)
The platform the Sensor is mounted on (if
applicable)

+description: String
Sensor description

+id_user: String (optional)
Used only if type is 'human'

+extrinsic: jsonObject
View attachment

1

n

<<measurements>>
Measurement

General measurement representation
+id_sensor: String
The senor the measurement was recorded by

+id_target: String (optional)
A geoObject the measurement is assigned to
(if applicable)

<<trials>>
Trial

Trials of the project
+trees: List of String
List of trees assigned to the trial.
GeoElements with type=tree

n

1

n

1

n

n

<<waypoints>>
Waypoint

Represents the planned robot position
+id_tree: String
Indicates which tree to scan. Reference to
‘GeoObject’ element with type=’tree’

<<routes>>
Route

Describes the path planning
+id_platform: String
Unique identifier of the platform used

1

n

<<fieldElements>>
GeoObject

Represents a field element of hazelnut
orchard or other element geo localized

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+type: String
‘FeatureCollection’ or ‘Feature’

+properties: jsonObject
Property of the object in json format

+geometry: jsonObject
The geometry of the object according to RFC
specification

n

<<activities>>
Activity

All activities to execute or executed in the
orchard

+id_target: List of String
List of id of ‘GeoObject’ elements that are
targets of activity

1

<<missions>>
Mission

Missions planned or executed in the orchard.
+id_platform: String
Id of platform used for mission.

1

1

<<users>>
User

Web app users
+id_fields: List of String (optional)
List of field enabled for the user.
Reference to "GeoObject" collection

1

n

n

n

1

1

n

1

1

n

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

35

4.2.1 GeoObject
This collection defines all the geo-located elements present in the hazelnut field, using the standard GeoJSON
format.

The coordinates of the element's point or perimeter are specified in the 'geometry' field.

The attributes of the object are stored in the properties field, at least the name and type of the element must
be specified, and it is also possible to specify any child elements, if the element represents a group of other
elements (for example a row of trees or a plot).

It is also possible to specify further details in the properties.info field which vary according to the type of
element being described.

4.2.1.1 Field description
Key Optional Data type Description example
id No String Unique identifier Field_16
created No Datetime Creation time in UTC

format
2019-02-15_11-20-35.0

type No String ‘FeatureCollection’ or
‘Feature’

Feature

properties No jsonObject List of properties of the
object

View GeoObject.properties
example

geometry No jsonObject The geometry of the object
according to RFC
specification

View GeoObject.geometry
example

4.2.1.2 JSON Format – GeoObject.geometry
Key Optional Data type Description example
type No String Type of geometry.

‘Point’ or ‘Polygon’ or
‘MultiPolygon’

 Polygon

coordinates No Position or
List of
Position

A position or a list of
position that represents
the geometry of the object

[
 [
 [12.297558, 42.279835],
 [12.297690, 42.279853],
 [12.298356, 42.279884],
 [12.299830, 42.279973],
]
]

4.2.1.3 JSON Format – GeoObject.properties
Key Optional Data type Description example
name No String Name of the object Field 16
type No Enum of

String
Object type
Enum value:
• farm
• field
• plot
• row

farm

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

36

• tree
info Yes jsonObject A list of properties of the

object, according to format
“GeoObject.properties.info”

View ‘GeoObject.propeties.info’
example

children Yes List of String List of id of ‘GeoObject’
elements contained in the
object

[
 "RYNI",
 "RYI",
 "RYTA",
 "RYTB",
 "RYTC",
 "RYF",
 "RYS"
]

4.2.1.4 JSON Format – GeoObject.properties.info
GeoObject.properties.type = “farm”

Key Optional Data type Description example
total_surface Yes Float SAT 1500
cultivated_surface Yes Float SAU 1250
field_number Yes Integer Number of fields in farm 2
plot_number Yes Integer Total number of plots into farm 13
management_system No Enum Enum value:

• organic
• conventional
• integrated

integrated

GeoObject.properties.type = “field”

Key Optional Data type Description example
total_surface Yes Float SAT 950
cultivated_surface Yes Float SAU 850
plot_number Yes Integer Total number of plots into field 6
irrigation_type Yes String Type of irrigation subirrigated
irrigation_flow_rate Yes Float Irrigation flow rate in lt/h 10

GeoObject.properties.type = “plot” | “row”

Key Optional Data type Description example
total_surface Yes Float SAT 5
cultivated_surface Yes Float SAU 5
fruit_variety Yes List of

FruitVariety
Embedded documents of
‘FruitVariety’ object

{
 ‘name’:’Tonda
romana gentile’
}

planting_year Yes Integer Planting year of the trees 2010
tree_number Yes Integer Number of trees in the element 10
planting_layout Yes String Planting layout in mt x mt 5x5

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

37

plant_density Yes Integer Plant density in nr pl/ha 3
tree_shape Yes String The shape of trees multibranches
irrigation_type Yes String Type of irrigation subirrigated
irrigation_flow_rate Yes Float Irrigation flow rate in lt/h 10
soil_type Yes String Type of soil clay

GeoObject.properties.type = “tree”

Key Optional Data type Description example
fruit_variety Yes List of

FruitVariety
Embedded documents of
‘FruitVariety’ object

{
 ‘name’:’Tonda
romana gentile’
}

planting_year Yes Integer Planting year of the trees 2010
tree_shape Yes String The shape of trees multibranches
irrigation_type Yes String Type of irrigation subirrigated
irrigation_flow_rate Yes Float Irrigation flow rate in lt/h 10
soil_type Yes String Type of soil clay

4.2.2 Platform
This table store the data of platforms used for data capture.

The platforms can be either fixed, like the weather station, or mobile like the ground robot and drone. Each
of them has installed one or more sensors that will perform the measurements.

For fixed platforms, a position is defined using georeferenced coordinates, while for mobile platforms, this
data is stored when data acquisition campaigns are performed.

4.2.2.1 Field description
Key Optional Data type Description example
id No String Unique identifier. Name of the

robot
UAV

created No Datetime Creation time in UTC format 2020-01-10_12-21-50.0
type No String Platform type UAV
movable No Boolean If platform is fixed or movable true
initial_position Yes jsonObject GPS position of the platform in

degree. Defined only for fixed
platform

N.A.

extrinsic Yes jsonObject Specifies the initial orientation
of the platform.

null

4.2.2.2 JSON Format – Platform. initial_position
Platform.movable = false

Key Optional Data type Description example
latitude No Float Latitude of GPS position of the platform

in degree
42.28013093333333

long No Float Longitude of GPS position of the
platform in degree

12.297804066666666

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

38

altitude No Float Altitude of GPS position of the platform
in meters

282.1049995422363

4.2.3 Sensor
This collection stores the data of all the devices through which it is possible to perform data acquisition.

For automatic detections, sensors such as thermal or multispectral cameras, weather stations or soil moisture
meters can be used.

Manual surveys, on the other hand, can be performed by expert operators and stored though the user
application, in which case the identification of the user who performed the operation will be stored.

For the sensors equipped with it, the initial orientation position in relation to the kinematics is also stored.

4.2.3.1 Field description
Key Optional Data type Description example
id No String Unique identifier of the sensor MicaSense RedEdge-M
created No Datetime Creation time in UTC format 2019-02-15_11-20-35.0
type No Enum of

String
Sensor type
Enum value:
• soil_probe
• laser_scanner
• weather_station
• camera
• image_sensor

camera

id_platform Yes String The platform the Sensor is
mounted on

UGV

description No String Sensor description MicaSense RedEdge-M
id_user Yes String Used only if type is 'human' null
extrinsic Yes jsonObject Specifies the initial orientation of

the intrinsic sensor orientation in
relation to the kinematics.

null

4.2.3.2 JSON Format – Sensor.type
Sensor.type = “camera”

Key Optional Data type Description example
label No String Label of the Camera when

displayed.
Sony a5100 UAV

sensors No List of String List of sub-sensors. The
camera is seen as a
collection of sensors.

[
 "Sony_a5100_UAV_0",
 "Sony_a5100_UAV_1",
 "Sony_a5100_UAV_2"
]

master No Integer Specifies the master
sensor.

0

extrinsics No List of List Specifies the relative
position and orientation
of the sub-sensors in

[
 [
 [1, 0, 0, 0],

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

39

relation to the master
sensor.

 [0, 1, 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 1]
],
 null,
 null
]

relative_exposure Yes List of Float Relative exposure times in
relation to the master
sensor.

10

Sensor.type = “image_sensor”

Key Optional Data type Description example
label No String Label of the Camera when

displayed.
Sony a5100 UAV red

device No String Identifier of the physical
device the imaging sensor
is mounted to.

Sony_a5100_UAV

height No Integer Height of the sensors
image in pixels.

4000

width No Integer Width of the sensors
image in pixels.

6000

sensor_height No Float Height of the sensor plate
in meters.

0.0156

sensor_width No Float Width of the sensor plate
in meters.

0.0235

focal_length No Float Focal length of the sensor
according to the
manufacturer.

0.035

intrinsics Yes JsonObject Intrinsic parameters of the
sensor.

{
 “c_x”: 3001.2,
 “c_y”: 1999.7,
 “f_x”: 5000.1,
 “f_y”: 5000.2,
 “s”: 0.01
}

wavelength Yes Float Wavelength of maximum
sensitivity in Nanometers.

610

fwhm Yes Float Full width at half
maximum of the sensor’s
sensitivity

40

spectral_sensitivity Yes JsonObject Spectral sensitivity for
specific wavelengths.

{
 “wavelength”: [
 500,
 501,
 …
],
 “transmission”: [

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

40

 0.01,
 0.02,
 …
]
}

distortion Yes JsonObject Lens distortion
parameters of the sensor.
An attribute "type"
specifies which distortion
model has been used.

{
 “type”: “opencv”,
 “k1”: -0.15,
 “k2:” 0.201,
 “p1”: -0.001,
 “p2”: 0.0,
 “p3”: -0.555
}

vignetting Yes JsonObject Vignetting image or
coefficients designed to
create the vignetting
image.

null

4.2.3.3 JSON Format – extrinsic
This information describes the initial orientation of the sensor respect to the camera, specifying the sensor
rotation matrix and possibly the spatial projection system.

Key Optional Data type Description example
m No List of List 4x4 roto-translation matrix of

the sensor.
[
 [0, -1, 0, 0],
 [-1, 0, 0, 0],
 [0, 0, -1, 0],
 [0, 0, 0, 1]
]

proj4 Yes String Spatial projection system.
String might be derived from
an EPSG code.

“+proj=utm +zone=33 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m
+no_defs”

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

41

4.3 Acquisition

All the information needed to acquire tree data and their status is stored in this collection group.

Figure 12 - Acquisition group elements of the data model schema

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

42

Some collections, as shown in Figure 12, contain the navigation plans of the devices and the definition of the
sensor parameters, others contain the raw data acquired. In addition, there are collections designed to store
the data processed by the processing processes and the media acquired by the users of the web apps. Real-
time measurements are also stored in this group.

4.3.1 Task
This collection stores the list of tasks of Pantheon project, in order to associate them as a goal of the
campaigns and trials.

4.3.1.1 Field description
Key Optional Data type Description example
id No String Identifier of the task Tree_Geometry_Reconstruct

ion
created No Datetime Creation time in UTC format 2019-02-15_11-20-35.0
abstract No String Long description of the Task Tree Geometry

Reconstruction
workpackage No String Work package the Task is

assigned to
4.1

4.3.2 Trial
All the tests set for data acquisition and association with the target test trees are stored in this collection.

4.3.2.1 Field description
Key Optional Data type Description example
id No String Unique identifier pruning_Yo
created No Datetime Creation time in UTC format 2019-02-15_11-20-35.0
id_task No String Task the trial is assigned to Pruning_Management_Pr

otocol
description No String Description of the trial Pruning variant A of

young trees.
trees No List of String List of trees assigned to the trial.

GeoElements with type=tree
[“Yo_S1”, “Yo_S2”]

4.3.3 Campaign
The Campaign collection contains information from the various acquisition campaigns.

The information stored is used to identify the day on which this campaign was carried out, the task and the
target of the acquisition. Furthermore, the platform which must carry out these measurements and the
positions it must take (id_platform and id_route) can be specified.

The campaign can be connected, via the id_mission field, to a planned mission using user application.

4.3.3.1 Field description
Key Optional Data type Description example
id No String Unique identifier camp_2020-01-10_12-21-47
created No Datetime Creation time in UTC format 2020-01-10_12-21-47.0
id_route Yes String Measurement plan of the

campaign
null

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

43

locations No List of
String

Coarse location of the
campaign. Reference to
‘GeoObject’ elements

[
" ZYT"
]

tasks No List of
String

List of tasks the campaign is
assigned to

[
"Tree_Geometry_Reconstructi
on",
"Suckers_Detection"
]

id_platform No String Unique identifier of the
platform used

UGV

id_mission Yes String Mission, which has triggered
the campaign

M_2020_01_13_1035

comments Yes List of
Comment

Embedded documents of
“Comment” object.
All comments of the campaign

View Comment example

4.3.4 Route
In this collection is stored the navigation plan of the platform that will acquire data in a campaign.

4.3.4.1 Field description
Key Optional Data type Description example
id No String Unique identifier route_tree_geometry_field16
created No Datetime Creation time in UTC

format
2020-01-10_12-21-47.0

locations No List of String Coarse location of the
campaign. Reference to
‘GeoObject’ elements

[
"Field_16"
]

tasks No List of String List of tasks the campaign
is assigned to. Reference
to ‘Task’ elements

[
"Tree_Geometry_Reconstruction",
"Suckers_Detection"
]

id_platform No String Unique identifier of the
platform used. Reference
to ‘Platform’ element

UGV

4.3.5 Waypoint
In this collection are stored the GPS positions that the data acquisition platform should assume during the
measurement campaign.

For each waypoint is also specified the yaw-pitch-roll rotation that the robot must have and possibly the
target tree of the acquisition.

4.3.5.1 Field description
Key Optional Data type Description example
id No String Unique identifier waypoint_1
created No Datetime Creation time in UTC format 2020-01-10_12-21-47.0
id_route No String The route the point belongs to.

Reference to ‘Route’ element
route_tree_geometry_field16

latitude No Float GPS position of the robot in degree 42.2801309

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

44

longitude No Float GPS position of the robot in degree 12.29780407
altitude No Float GPS position of the robot in meters 282.0
yaw No Float Orientation of the robot in radians 0.1
pitch No Float Orientation of the robot in radians 0.0
roll No Float Orientation of the robot in radians -0.02
id_tree Yes String Indicates which tree to scan.

Reference to ‘GeoObject’
element with type=’tree’

“Yo_S1”

4.3.6 Position
The real positions in which the robot acquired the data are stored in this collection, each real position can be
associated with a predetermined position of the navigation plan through the id_waypoint field.

In addition, the raw data sent by the robot's GPS device is stored in the nmea_data field.

4.3.6.1 Field description
Key Optional Data

type
Description example

id No String Unique identifier pos_2020-01-10_12-21-47
created No Datetime Creation time in UTC format 2020-01-10_12-21-47.0
id_waypoint Yes String Position the robot should have been Ad_S1-XX-Ad_S2-XX-South
id_campaign No String Unique identifier of data acquisition

campaign
camp_2020-01-10_12-21-
47

latitude Yes Float GPS position of the robot in degree 42.28013093333333
longitude Yes Float GPS position of the robot in degree

12.297804066666666

altitude Yes Float GPS position of the robot in meters 282.1049995422363
yaw Yes Float Orientation of the sensor in relation

to the robot in radians
null

pitch Yes Float Orientation of the sensor in relation
to the robot in radians

null

roll Yes Float Orientation of the sensor in relation
to the robot in radians

null

nmea_data No Blob Raw data from gps device $GPGGA,123519,4807.038,
N,01131.000,
E,1,08,0.9,545.4,M,46.9,M,
,*47

4.3.7 Capture
All the information concerning the single capture event is stored in this collection.

With each capture, the relative position is memorized, which sensor has been used, its orientation and its
positioning with respect to the position of the robot.

Each sensor model has different acquisition parameters, the data stored for each model used in the project
are listed below.

4.3.7.1 Field description
Key Optional Data type Description example
id No String Unique identifier rgb_2020-01-10_12-21-50

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

45

created No Datetime Creation time in UTC

format
2020-01-10_12-21-50.0

id_trigger Yes String Orientation the sensor
should have had

N.A.

id_position No String Position of the robot at
the moment of sensor
triggering

pos_2020-01-10_12-21-47

id_sensor No String Sensor of the capture Sony_a5100_UGV
sensor_parameters No jsonObject Describing the sensor

parameters selected for
the capture

View example in
‘Capture.sensor_parameters’

yaw Yes Float Orientation of the sensor
in relation to the robot
position in radians

-1.1934650215387383

pitch Yes Float Orientation of the sensor
in relation to the robot
position in radians

0.2635410250749983

roll Yes Float Orientation of the sensor
in relation to the robot
position in radians

-0.005423234509639068

x Yes Float Position of the sensor in
relation to the robot
position in meters

-1.51344653701792

y Yes Float Position of the sensor in
relation to the robot
position in meters

0.038482575267721586

z Yes Float Position of the sensor in
relation to the robot
position in meters

0.5680666632859868

4.3.7.2 JSON Format – Capture.sensor_parameters
Capture.id_sensor = “Sony_a5100_UGV”

Key Optional Data type Description example
aspectratio Yes String Aspect ratio 3:2
capturemode Yes String Capture mode Single Shot
exposurecompensation Yes String Exposure compensation 0
exposuremetermode Yes String Exposure meter mode Average
expprogram Yes String Exposure program Intelligent Auto
f_number Yes String Frame number 16.0
focusmode Yes String Focus mode Automatic
imagequality Yes String Image quality RAW
shutterspeed Yes String Shutter speed 1/125
imagesize Yes String Image size Large
iso Yes String Iso Auto ISO
whitebalance Yes String White balance Automatic

Capture.id_sensor = “MicaSense_RedEdge-M”

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

46

Key Optional Data type Description example
exposureAuto Yes Bolean Automatic exposure true

Capture.id_sensor = “Faro_Focus-S70”

Key Optional Data type Description example
resolution Yes String Resolution 1/8
quality Yes String Quality 2
distance Yes String Distance near

4.3.8 Trigger
In this collection are stored all the information that has been planned concerning the single capture event.

It contains data like that of the Capture collection but represents the planning of the acquisition events.

4.3.8.1 Field description
Key Optional Data type Description example
id No String Unique identifier trigger_1
created No Datetime Creation time in UTC format 2020-01-10_12-

21-50.0
id_waypoint No Position of the robot at the moment

of sensor triggering
waypoint_1

id_sensor No String Sensor of the capture Sony_a5100_UGV
sensor_parameters No jsonObject Sensor parameters selected for the

capture according to the sensor type
{}

yaw No Float Orientation of the sensor in relation
to the robot in radians.

0.0

pitch No Float Orientation of the sensor in relation
to the robot in radians.

0.2

roll No Float Orientation of the sensor in relation
to the robot in radians.

0.0

x No Float Position of the sensor in relation to
the the robot in meters

0.2

y No Float Position of the sensor in relation to
the the robot in meters

0.0

z No Float Position of the sensor in relation to
the the robot in meters

0.0

4.3.8.2 JSON Format – Trigger.sensor_parameters = Capture.sensor_parameters
This format is the same of the “Capture” element, see paragraph 4.3.7.2.

4.3.9 File
This collection stores the metadata of the files related to the project such as the images of the captures, the
intermediate files of the elaboration processes, the media acquired through the application user interface
and other attachments.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

47

The files can be stored on the file system, in this case path and filename will be specified, or stored in binary
format directly within the database in the 'Content' collection, in this case they will be identified by the same
unique identifier. In addition, when possible, the acquisition target will be specified (be it a single tree or a
larger set).

If the files derive from a capture, the sensor, the identification of the capture and the acquisition campaign
and possibly the related task and trial will be specified.

For files derived from elaboration processes, it will be specified through the step identifier (id_chain) which
phase of the process they are related to.

For the files acquired via the web interface, the activity to which they are connected (id_activity) and possibly
the related measurement will be specified.

4.3.9.1 Field description
Key Optional Data type Description example
id No String Unique identifier faro_2020-02-12_12-52-36
created No Datetime Creation time in UTC format 2020-02-12_12-52-36.0
id_capture Yes String Capture object of the file (if

applicable)
faro_2020-02-12_12-52-36

file_name No String Name of the file Scan_408
file_type No String File extension fls
file_path Yes String Physical location of the file

on disc (if applicable). The
full file path is created by
file_path" + “/” +
"file_name" (+ “_” + “band”)
+ "." + "file_type"

./Faro_Focus-S70/raw

band Yes Integer Layer or band of the file. In
particular useful for images

0

id_chain Yes String Processing stage of the file.
The processing stage is
defined by the processing
chain the file has been
created by

file_conversion

id_campaign Yes String Specifies the campaign of
the file

camp_2020-02-12_12-52-30

id_task Yes String Used to link a file to a
specific task

Water_Stress_Measurement

id_trial Yes String Used to link a file to a
specific trial

pruning_Yo

id_activity Yes String Used to link a file to a
specific activity

105

id_sensor Yes String The sensor the file has
created (if applicable)

Faro_Focus-S70

id_target Yes String Reference to GeoObject
element

Yo_S1

id_measurement Yes String Measurement the file is
assigned to (if applicable)

measurement_1

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

48

4.3.10 Content
The contents of the files are stored in binary format in this collection.

The unique identifier stored in this table is the same used to store the related metadata in the File collection.

4.3.10.1 Field description
Key Optional Data type Description example
id No String Unique identifier, the same for the

‘File’ collection
faro_2020-02-12_12-52-36

created No Datetime Creation time in UTC format 2020-02-12_12-52-36.0
content No Blob Content of file

4.3.11 Chain
This collection contains the definition of all the steps necessary for data elaboration processes, starting from
the raw data acquired up to obtaining the outputs of the individual processes.

For each step, both the script to be executed and the configuration parameters are specified.

4.3.11.1 Field description
Key Optional Data type Description example
id No String Identifier. Different versions are

specified by creation time
file_conversion

created No Datetime Creation time in UTC format. The
latest version of the chain is
executed

2020-02-12_12-52-36.0

name No String Name of the processing chain.
Used to identify the latest version
of a chain.

FileConversion

chains Yes List of String List of sub-chains (if applicable) [“create_dem”, “classify”]
command Yes String Command or script to execute (if

applicable)
python fileConversion.py

config Yes jsonObject Configuration values of the script
(if applicable).

{
 “update”: true,
 “q_file”: {
 “file_type”: “arw”
 }
}

description No String Verbal description of the
processing chain

Converts files to a more
useful file format

4.3.12 Measurement
Collection for storing all the measurements made, both through automatic sensors (for example weather
station or soil sensor) and through manual surveys by experts.

If the measurements are acquired through the webapp interface, they can be connected to the activity stored
in the Activity collection.

In addition, each measurement can be assigned to a target that identifies the tree or area of the field to
which the measurement refers.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

49

4.3.12.1 Field description
Key Optional Data type Description Example
id No String Unique identifier soil_42_temp
created No Datetime Creation time in UTC format 2020-02-12_12-52-36.0
id_sensor No String The senor the measurement

was recorded by
TN_01

type No String Type of measurement
• soil_moisture
• soil_temperature
• air_pressure
• air_temperature
• air_humidity
• wind_speed
• wind_direction
• solar_radiation
• number_of_suckers
• NDVI
• CWSI
• 3D_model
• ...

soil_temperature

processing_level No Enum of
String

Specifies the processing level
of a measurement to
distinguish raw
measurements from higher
order products.
Processing levels:
• Raw
• processed

Raw

unit No String SI unit °
value Yes Float Measurement value 13
id_task Yes String Used to link a file to a

specific task
Tree_Geometry_
Reconstruction

id_trial Yes String Used to link a measurement
to a specific trial

pruning_Yo

id_activity Yes String Used to link a measurement
to a specific activity

105

id_target Yes String A geoObject the
measurement is assigned to
(if applicable)

Field_16

id_group Yes String Used to aggregate a
collection of measurements

soil_42

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

50

4.4 Agronomical activities

Collections dedicated to the management of agronomic activities in the hazelnut field.

The collection activity, as shown in Figure 13, is populated both by the process of processing the data
acquired automatically and through the web application.

The collection mission allows to group together homogeneous activities and plan operations to be carried
out in the orchard.

Figure 13 - Agronomical activities group elements of the data model schema

4.4.1 Activity
This collection contains all the activities performed, or to be performed, in the hazelnut field. These activities
can be generated automatically by the acquired data elaboration processes or can be entered manually using
the application user interface. Furthermore, through the activities it is also possible to manage new data
acquisition operations.

The activities also include collection and sales operations which will be used as inputs to estimate the
production and profit of the following years.

Through the status of the activity it is possible to manage the phases of the activity, approve or discard
activities that have been automatically generated by the system, plan them and keep track of the history of
the activities carried out.

Each activity is associated with the target that identifies the objective of the operation to be carried out.

<<files>>
File

File or product meta data
+id_activity: String (optional)
Used to link a file to a specific activity

<<platforms>>
Platform

Describes a specific robot or generic
platform

+id: String
Name of the robot. E.g. "UGV", "UAV" or
"weather_station"

<<fieldElements>>
GeoObject

Represents a field element of hazelnut
orchard or other element geo localized
+id: String
Unique identifier

<<activities>>
Activity

All activities to execute or executed in the
orchard

+id_target: List of String
List of id of ‘GeoObject’ elements that are
targets of activity

+id: String
Unique identifier of activity

+created: Timestamp
Creation time in UTC format

+type: Enum of String
Activity type. View attachment

+status: Enum of String
Status of activity. View attachment

+info: jsonObject
Detail of activity, json format according of
"Activity.info". View attachment

+log: List of Log
Log of all changes made to activity
accordint to "Log" format. View attachment

+comments: List of Comment
All comments to the activity, according to
json format of Comments. View attachment

+id_mission: String
Filled only if activity is contained in a
mission

1

<<missions>>
Mission

Missions planned or executed in the orchard.
+activities: List of String
All activities inserted into the mission.

+id: String
Unique identifier of activity

+created: Timestamp
Creation time in UTC format.

+type: Enum of String
+planned_date: DateTime
Date of planned mission

+start_date: DateTime
Date of mission beginning.

+end_date: DateTime
Date of mission ending.

+status: Enum of String
Status of mision

+id_platform: String
Id of platform used for mission.

+log: List of jsonObject
Log format. View attachment

+equipment: jsonObject
Equipment format. View attachment

1

n

1

1

1

1

n

<<measurements>>
Measurement

General measurement representation
+id_activity: String (optional)
Used to link a measurement to a specific
activity

n

1

n

1

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

51

By grouping several homogeneous activities in a mission, it is possible to plan the execution date of the
various operations, in which case the id_mission field will be enhanced.

Through the 'info' field, detailed information is specified for each type of operation, for example the branches
to be cut for the pruning activity or the pesticide to be administered in the case of pest control activities. In
addition, the collection will contain the logs of changes made to the activity over time and the comments
that operators will have entered through the application.

4.4.1.1 Field description
Key Optional Data type Description example
id No String Unique identifier 105
created No Datetime Creation time in UTC format 2020-01-12_14-41-23.0
type No Enum of

String
Activity type.
Enum value:
• pruning
• sucker
• water
• pest
• uav_data_acquisition
• ugv_data_acquisition
• manual
• harvest
• sales

pruning

status No Enum of
String

Status of activity.
Enum value:
• suggested
• ready
• planned
• executed
• rejected

ready

info Yes jsonObject Detail of activity, json format
according of “Activity.info”

View Activity.type =
“pruning” example

log Yes List of Log Log of all changes made to activity.
Embedded documents of “Log” object

View Log example

comments Yes List of
Comment

Embedded documents of “Comment”
object.
All comments to the activity

View Comment example

id_mission Yes String External reference “Mission.id”.
Filled only if activity is contained in a
mission

null

id_target No List of
String

List of id of ‘GeoObject’ elements that
are targets of activity

[‘YOA9’]

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

52

4.4.1.2 JSON Format – Activity.info
Activity.type = “pruning”

Key Optional Data type Description example
branches No List of String List of branches to cut [2, 7]

model No String Link to a measurement object, representing
the 3D model of the tree.

tree_geometry_5

Activity.type = “sucker” | “pest”

Key Optional Data type Description example
id_chemical No String Identifier of the chemical product to give SULPH
quantity No Float Ml of product to give 20

Activity.type = “water”

Key Optional Data type Description example
id_valve No String Identifier of the irrigation valve valve_1
time No Integer Minutes for m3 hectare 30

Activity.type = “uav” | “ugv”

Key Optional Data type Description example
info Yes String Other detail and note about

activity
Geometry tree reconstruction
campaign acquisition

Activity.type = “manual”

Key Optional Data type Description example
type No Enum Activity type.

Enum value:
• pruning_required
• sucker_detection
• damage_detection
• pest_detection
• disease_detection
• water_required
• other

pest_detection

info Yes jsonObject JSON Format “Activity.info” {
 “bug” : “Hazelnut mite”,
 “quantity” : 25
}

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

53

Activity.type = “harvest”

Key Optional Data type Description example
farm No String Id of Farm. Reference to ‘GeoObject’ element Field_16
date No DateTime Date of harvest operation 2019-09-03_00-00-00.0

Activity.type = “sales”

Key Optional Data type Description example
date No DateTime Date of sale operation 2019-10-15_00-00-00.0
quantity No Float Quantity of product of the sale 30
quality_band No String Reference to quality band of

product
TRG_INT_FQ

total_price No Float Total price of the sale 27450
id_targets Yes List of String List of id of ‘GeoObject’ elements Field_18
id_price Yes String Reference to priceData applied. Id

of ‘PriceData’ element
P1_859678

4.4.2 Mission
The mission data, their planning and the log of their execution are stored in this collection.

The missions represent groupings of activities of the same type, which have an assigned planning date.

To start the mission, it is necessary to specify the platform that will perform the mission, for example UGV,
and its equipment that varies according to the mission (for example herbicide and quantity loaded in case of
detection of sucker).

After the start of the mission, all the status changes and its execution are tracked in the logs.

4.4.2.1 Field description
Key Optional Data type Description example
id No String Unique identifier M_2020_01_13_1035
created No Datetime Creation time in UTC format 2020-01-13_10-35-58.0
type No Enum of

String
Enum value:
• pruning
• sucker
• water
• pest
• uav
• ugv
• manual

sucker

planned_date No DateTime Mission planning date 2020-01-15_11-00-00.0
start_date Yes DateTime Real date of beginning of mission 2020-01-15_11-18-45.0
end_date Yes DateTime End date of mission null
status No Enum Enum value:

• planned
• in_progress
• paused
• executed_partially

in_progress

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

54

• executed
id_platform Yes String Platform used for mission

execution
UGV

log Yes List of Log Embedded documents of ‘Log’
object

[
 {
 “created” : 2020-01-
13_10-35-58.0,
 “id_user” : 5,
 “operation” :
“create_mission”,
 “note” : null
 },
 {
 “created” : 2020-01-
15_11-18-45.0,
 “id_user” : 5,
 “operation” :
“start_mission”,
 “note” : null
 }
]

activities No List of
String

List of id of ‘Activity’ elements [
 “115”,”123”,”148”
]

equipment Yes jsonObject Detail of platform equipment.
Json object in
“Mission.equipment” format

{
 “id_chemical” : “SULPH”
 “quantity” : 150
}

4.4.2.2 JSON Format – Mission.equipment
Mission.type = “sucker” | “pest” | “nutrition”

Key Optional Data type Description example
id_chemical No String Name of product SULPH
quantity No Float Total quantity of product 200

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

55

4.5 User application

All support information for the user application (shown in Figure 14).

Figure 14 - User application group elements of the data model schema

<<fieldElements>>
GeoObject

Represents a field element of hazelnut
orchard or other element geo localized
+id: String
Unique identifier

<<damages>>
Damage

All damage type
+id: String
Unique identifier.

+type: String
Type of damage. E.g: abiotic, biotic,...

+generate_alert: Boolean
Checked if alert activate a notification in
the UI

+alert_parameters: jsonObject
Range limit for notification. E.g:
temperature under 0 degrees

<<damageSolutions>>
DamageSolution

Defined solution for damages
+id: String
Unique identifier

+id_damage: String
Identifier of damage

+activity_type: Enum of String
Type of solution applicable to damage. E.g:
activity, insurance, ...

+description: jsonObject
Detail about activity. View attachment

1

n

<<chemicalProducts>>
ChemicalProduct

List af all chemical product available
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+type: String
Describe type of product. E.g: herbicide,
pesticide

+limits: List of jsonObject
Terms of use of chemical product

1

n

<<qualityParameters>>
QualityParameter
Defined parameter of quality

+id: String
Unique identifier

+cultivation_type: String
Type of cultivation. E.g: hazelnut, apple,
banana

+name: String
Name of quality parameter. E.g: umidity,
made shelled, defective

+unit_misure: String
Unit of mesurements. E.g: %, difect number

<<qualityBands>>
QualityBand

Defined band of quality
+id: String
Unique identifier

+year: String
Year of validity

+band_name: String
Name of band. E.g: first quality, second
quality, ...

+cultivation_type: String
+cultivation_variety: String
Variety of fruit or cultivation. E.g:
giffoni, tonda romana gentile, nocchione,
...

+cultivation_management_system: Enum of String
Orchard management system. Enum: organic /
conventional / integrated

+values: List of jsonObject
Value of quality parameters that define the
range for quality band

1

n

<<priceData>>
PriceData

Sale price of the product and its validity
+id: String
Unique identifier

+created: Timestamp
Creation time in UTC format

+id_quality_band: String
Reference to quality band applied

+price: Float
Selling price

+valid_from: Datetime
Begin of validity

+valid_to: Datetime
End of validity

1

1

<<users>>
User

Web app users
+id: String
Unique identifier

+username: String
Username to access to the UI

+password: String
Hash value of password

+id_fields: List of String (optional)
List of field enabled for the user.
Reference to "GeoObject" collection

+id_roles: List of String
List of user’s roles. Reference to “Role”
collection

1

<<roles>>
Role

Web app roles
+id: String
Unique identifier

+name: String
Name of role

+description: String (optional)
Description of role

1

n

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

56

Users and roles to allow secure access to the application and to the individual functions, qualitative
parameters and price history to define sales prices and to make forecasts, damages and chemicals available
to support the execution of agronomical activities.

4.5.1 Role
This collection stores the roles of the user application that discriminate the features that will be activated
for the various users of the application.

4.5.1.1 Field description
Key Optional Data type Description example
id No String Unique identifier agronomist_01
name No String Name of role agronomist
description Yes String Description of role Role of expert agronomist

4.5.2 User
The user collection contains the list of users registered in the system.

Each user can be assigned one or more roles and the fields for which it is enabled.

4.5.2.1 Field description
Key Optional Data type Description example
id No String Unique identifier 10
username No String Username to access to the UI nick_jones@pantheon.com
password No String Hash value of password 9e3bc74930b431c77afaf99

c2902ea1f302d0083
id_fields Yes List of String List of id_field enabled for the

user. Reference to “GeoObject”
collection

[
 “pantheon_field”
]

id_roles No List of Sting List of user’s roles. Reference to
“Role” collection

[
 “agronomist”,
 “user_admin”
]

4.5.3 QualityParameter
Through this collection, the qualitative parameters used to define the quality and price of sales of the harvest
are defined.

4.5.3.1 Field description
Key Optional Data type Description example
id No String Unique identifier H_MSH
cultivation_type No String Type of cultivation hazelnut
name No String Name of quality parameter. E.g: humidity,

made shelled, defective
made shelled

unit_measure No String Unit of measurement.
E.g: %, defect number

%

4.5.4 QualityBand
This collection stores the quality bands to define the sale price of the harvest.

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

57

The quality bands change annually based on the cultivation management system.

For each quality band, a set of quality parameters is stored with the minimum and maximum reference values
that identify their characteristics.

4.5.4.1 Field description
Key Optional Data type Description example
id No String Unique identifier TGR_INT_FQ
year No String Year of validity 2019
band_name No String Name of band first quality, second

quality
cultivation_type No String hazelnut
cultivation_variety No String Reference to

“Cultivation_variety”
id

TGR

cultivation_management_system No Enum of
String

Orchard
management
system.
Enum value:
• organic
• conventional
• integrated

integrated

values No List of
jsonObject

Value of quality
parameters that
define the range for
quality band.
Embedded json of
format
‘QualityBand.value’

View example of
‘QualityBand.value’

4.5.4.2 JSON Format – QualityBand.value
Key Optional Data type Description example
id_quality_parameter No String H_MSH
min_value No Float 80
max_value No Float 90

4.5.5 PriceData
In this collection the prices established for the product are saved based on the quality ranges and,
consequently, on the type of cultivation.

For each price, the validity must be specified as it can vary over time, in this way the history of price changes
is also stored.

4.5.5.1 Field description
Key Optional Data type Description example
id No String Unique identifier P1_859678
created No Datetime Creation time in UTC format 2019-09-20_18-05-33.0
id_quality_band No String Reference to quality band applied TGR_INT_FQ
price No Float Selling price 15.20
valid_from No Datetime Begin of validity 2019-10-01_00-00-00.0

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

58

valid_to No Datetime End of validity 2019-12-01_00-00-00.0

4.5.6 CultivationVariety
List of product varieties managed in the project.

4.5.6.1 Field description
Key Optional Data type Description example
id No String Unique identifier of variety TGR
name No String Name of variety Tonda gentile romana

4.5.7 ChemicalProduct
Collection that stored the list of chemicals available in cultivation.

Each document contains the history of all its variations of the application limits.

The application limit is defined in a json structure included in the document that specifies the terms of
validity, the minimum and maximum quantity of product that can be administered and the maximum number
of doses.

The limits of application of a chemical differ according to the cultivation method.

4.5.7.1 Field description
Key Optional Data type Description example
id No String Unique identifier SULPH

created No Datetime Creation time in UTC format 2018-11-15_13-40-05.0
type No String Describe type of product.

e.g.: herbicide, pesticide
Sulphur

limits Yes List of
jsonObject

JSON Format
“ChemicalProduct.limit”

View JSON Format –
ChemicalProduct.limit
 example

4.5.7.2 JSON Format – ChemicalProduct.limit
Key Optional Data type Description example
created No Datetime Creation time in UTC

format
2018-11-15_13-
40-05.0

valid_from No Datetime Start of validity for the
administration limit

2019-01-01_00-
00-00.0

valid_to No Datetime End of validity for the
administration limit

2019-12-31_00-
00-00.0

min Yes Float Minimum quantity that
can be administered

15

max Yes Float Maximum quantity that
can be administered

20

num_apply Yes Float Maximum number of
administrations allowed

null

cultivation_management_system No Enum of
String

Orchard management
system.
Enum value:
• organic

integrated

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

59

• conventional
• integrated

4.5.8 Damage
This collection stores information on the various damages that may occur in the orchard, it is possible to
indicate whether it must provide notification in the user application and the range of threshold values that
trigger the alarm.

4.5.8.1 Field description
Key Optional Data type Description example
id No String Unique identifier PEST_HM
description No String Description of damage Hazelnut mite
type No String Type of damage.

E.g: abiotic, biotic
pest

generate_alert No Boolean Checked if alert activate a
notification in the UI

false

alert_parameters Yes List of jsonObject Range limit for notification. Each
one in and condition.
E.g: Temperature under 0 degrees
for 3 hours

null

4.5.8.2 JSON Format – Damage.alert_parameter
Key Optional Data type Description example
subject Yes String Type of damage Temperature
min_value Yes String Minimum threshold of acceptable value range. 0
max_value Yes String Maximum threshold of acceptable value range. 45
unit Yes String SI unit of value °

4.5.9 DamageSolution
The collection stores the activities, and the related details, which must be implemented to correct the
damage that can occur in cultivation.

This information is used to configure automatic processes for generating suggested activities.

4.5.9.1 Field description
Key Optional Data type Description example
id No String Unique identifier Damage_01
id_damage No String Identifier of damage PEST_HM
activity_type No Enum of String Type of solution applicable to damage.

Enum value:
• activity
• insurance
• nothing

activity

description Yes jsonObject Detail about activity. According to
“DamageSolution.description”

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

60

4.5.9.2 JSON Format – DamageSolution.description
DamageSolution.activity_type = “activity”

e.g.: agronomical activity or pesticide administration

Key Optional Data type Description example
activity_type No Enum of

String
Type of activity
Enum value:
• pruning
• sucker
• water
• pest
• manual

pest

id_chemical_product Yes String Unique identifier of a chemical
product to use

SULPH

quantity Yes Float Quantity of product to
administer

15

unit Yes String Unit measure of product Ml
note Yes Text Note and other operation to do Only 15-20% of buds

DamageSolution.activity_type = “insurance”

Key Optional Data type Description example
name No String Name of assurance Assurance_0

1
policy_number No String Policy number 123456
valid_from No DateTime Start of validity 01/01/2020
valid_to No DateTime End of validity 31/12/2020
note Yes Text Note and other operation to do

activity_type = “nothing” | null

Key Optional Data type Description example
note Yes String Note and other operation to do A simple note

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

61

4.6 Embedded data

Structure of embedded document, like logs and comments (Figure 15).

Figure 15 - Embedded data group elements of the data model schema

4.6.1 Comment
This scheme represents the JSON format for storing the comments of the users to various types of content
such as missions, activities and campaigns.

Using a MongoDB database, a separate collection is not defined for this type of data but will be included
directly embedded in the documents to which they refer.

4.6.1.1 Field description
Key Optional Data type Description example
created No Datetime Creation time in UTC format 2020-01-15_11-18-45.0
id_user No String Reference to id_user of ‘Users’ collection 5
text No Text Text of comment Lorem ipsum dolor sit

amet, consectetur
adipiscing elit, sed do
eiusmod tempor
incididunt ut labore et
dolore magna aliqua.

4.6.2 Log
This scheme represents the json format for storing logs of various types of content such as missions, activities
and campaigns.

<<campaigns>>
Campaign

Groups a collection of positions of a
specific measurement day

+comments: List of Comment (opt)
Embedded documents of “Comment” object. All
comments of the campaign

<<activities>>
Activity

All activities to execute or executed in the
orchard

+comments: List of Comment
All comments to the activity, according to
json format of Comments. View attachment

+log: List of Log
Log of all changes made to activity
accordint to "Log" format. View attachment

<<missions>>
Mission

Missions planned or executed in the orchard.
+log: List of jsonObject
Log format. View attachment

1

n

<<Comments>>
Comment

Format of embedded comments in other
documents like missions, activities and

campaigns.
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_user: String
Reference to id_user of ‘Users’ collection

+text: Text
Text of comment

<<Logs>>
Log

Format of embedded logs in other documents
like missions, activities and campaigns.

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_user: String
Reference to id_user of ‘Users’ collection

+operation: String
Operation executed from user

+note (optional): Text
Text of comment

1

n
1

n

1

n

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

62

Using a MongoDb database, a separate collection is not defined for this type of data but will be included
directly embedded in the documents to which they refer.

4.6.2.1 Field description
Key Optional Data type Description example
created No Datetime Creation time in UTC format 2020-01-15_11-18-45.0
id_user No String Reference to id_user of user’s collection 5
operation No String Operation executed from user start_mission
note Yes Text Other detail about operation Null

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

63

4.7 Configuration data

4.7.1 Disease
This data will populate the "Damage", "DamageSolution" and "ChemicalProduct" collections for the part of
the data that relates to pest and disease and other damages.

Disease (causal
agent)

2019 Agronomic actions

Active Ingredients for
control

Intervention
threshold

«Mal dello
stacco»
(Cytospora
corylicola)

present Removal and destruction of
affected plant parts
(burning)
After pruning, disinfection
of cuts and protection with
sealing compounds

Copper compounds
(max 4 Kg ha/year)
 2 scheduled treatments
(late summer and
vegetative restart)

Not available

Nut Grey Necrosis
(Fusarium
lateritium)

present - Pyraclostrobin + Boscalid
max 2 treatments/year
(according to symptoms
appearence)

Not available

Brown rot of nuts
(Monilia
fructigena)

present Removal and destruction of
affected hazelnuts.
Protection of plants from
injuries

Thiophanate-methyl
Only in wet and warm
seasons
and during early fruiting

Not available

Gleosporiosi
(Piggotia coryli)

present - Thiophanate-methyl
max 1 treatment/year
(early autumn - before
leaves fall)

Not available

Bacterial blight
(Xanthomonas
arboricola pv.
corylina)

present Removal and destruction of
affected plant parts
(burning)
Sterilization of tools during
pruning and disinfection of
cuts

Copper compounds
(max 4 Kg ha/year)
 2 scheduled treatments
(late summer and
vegetative restart)
Additional treatment in
case of late frost
damages

Not available

Bacterial canker
«Moria»
(Pseudomonas
avellanae)

absent Suckers removal
After pruning, disinfection
of cuts and protection with
sealing compounds

Copper compounds
(max 4 Kg ha/year)
Acibenzolar-S-methyl
severe symptoms:
2 treatments in autumn
(begin of leaves fall and
half leaves fall)
1 or 2 additional
treatments at vegetative
restart.
slight symptoms:
1 treatment at leaves fall
and
1 at vegetative restart.

Not available

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

64

4.7.2 Pest
This data will populate the "Damage", "DamageSolution" and "ChemicalProduct" collections for the part of
the data that relates to parasites.

4.7.3 Other damages
Additional types of damage that may occur in the harvest with an indication of the activity to be undertaken
and the condition for activating the notification.

Insect Pests 2019 Agronomic
actions

Active Ingredients for
control

Intervention
threshold

Cimici (Gonocerus
acuteangulatus, Palomena
prasina etc.)

present • Piretrum
• Mineral oil
• Azadiractin A
• Indoxacarb
• Lambda-cyhalothrin
• Etofenprox

2 specimens/tree

Halyomorpha halys

present • Deltametrin
• Etofenprox

Hazelnut mite (Phytoptus
avellanae)

present • Sulphur
• Mineral oil

15/20% of buds

Hazelnut weevil (Curculio
nucum)

absent • Clorpirifos
• Deltametrin
• Lambda-cyhalothrin
• Mineral oil
• Indoxacarb
• Fosmet
• Etofenprox
• Metam potassium

2 specimens/tree

Damage Agronomic actions Insurance Alert
cold damage Yes yes sub-zero temperature (-1 degree)
wind damage No yes higher than X knots
drought damage No yes temperature exceeds 35 for total hours

(e.g. 3 hours)
high temperature No yes temperature (above 35 degrees)
ungulates (wild boar
and roe deer)

No yes presence

dormouse and squirrel No yes presence

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

65

5 Appendix

5.1 Annex 1 - Complete data model schema

Figure 16 - Full data model schema (part 1 of 2)

<<captures>>
Capture

Describes the orientation of a sensor in the moment of
triggering

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_trigger: String (optional)
Orientation the sensor should have had

+id_position: String
Position of the robot at the moment of sensor triggering

+id_sensor: String
Sensor of the capture

+sensor_parameters: jsonObject
Describing the sensor parameters selected for the capture.
View attachment

+yaw: Float
Orientation of the sensor in relation to the robot in
radians

+pitch: Float
Orientation of the sensor in relation to the robot in
radians

+roll: Float
Orientation of the sensor in relation to the robot in
radians

+x: Float
Position of the sensor in relation to the robot in meters

+y: Float
Position of the sensor in relation to the robot in meters

+z: Float
Position of the sensor in relation to the robot in meters

<<positions>>
Position

Represents a robot position
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_waypoint: String (optional)
Position the robot should have been

+id_campaign: String
Unique identifier of data acquisition
campaign

+latitude: Float
GPS position of the robot in degree

+longitude: Float
GPS position of the robot in degree

+altitude: Float
GPS position of the robot in meters

+yaw: Float
Orientation of the robot in radians

+pitch: Float
Orientation of the robot in radians

+roll: Float
Orientation of the robot in radians

+nmea_data: Blob
Raw data from gps device

n

1

<<files>>
File

File or product meta data
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_capture: String (optional)
Capture object of the file (if applicable)

+file_name: String
Name of the file

+file_type: String
File extension. E.g. "tif"

+file_path: String (optional)
Physical location of the file on disc (if
applicable). The full file path is created
from "file_path"+"file_name"+"."+"file_type"

+band: Integer (optional)
Layer or band of the file. In particular
useful for images

+id_chain: String (optional)
Processing stage of the file. The processing
stage is defined by a processing chain

+id_campaign: String (optional)
Specifies the campaign of the file

+id_task: String (optional)
Used to link a file to a specific task

+id_trial: String (optional)
Used to link a file to a specific trial

+id_activity: String (optional)
Used to link a file to a specific activity

+id_sensor: String (optional)
The sensor the file has created (if
applicable)

+id_target: String (optional)
Reference to GeoObject element

+id_measurement: String (optional)
Measurement the file is assigned to (if
applicable)

1

n

<<campaigns>>
Campaign

Groups a collection of positions of a
specific measurement day

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_route: String (opt)
Measurement plan of the campaign

+locations: List of String
Coarse location of the campaign. Reference
to GeoObject elements

+tasks: List of String
List of tasks the campaign is assigned to

+id_platform: String
Unique identifier of the platform used

+id_mission: String (optional)
Mission, which has triggered the campaign

+comments: List of Comment (opt)
Embedded documents of “Comment” object. All
comments of the campaign

1

n

<<platforms>>
Platform

Describes a specific robot or generic
platform

+id: String
Name of the robot. E.g. "UGV", "UAV" or
"weather_station"

+created: Datetime
Creation time in UTC format

+type: String
Platform type. E.g. UAV, UGV, MeteoStation

+movable: Boolean
If platform is fixed or moovable

+initial_position: jsonObject (opt)
GPS position of the platform in degree.
Defined only for fixed platform

1

n

<<tasks>>
Task

Names of the PANTHEON Tasks
+id: String
Identifyer of the task, e.g. "Tree Geometry
Reconstruction", "Sucker Detection"

+created: Datetime
Creation time in UTC format

+abstract: String
Long description of the Task

+workpackage: String
Workpackage the Task is assigned to. E.g.
"4.1"

n

n

n

<<contents>>
Content

File content in binary format
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+content: Blob
Content of file

1

0-1

<<sensors>>
Sensor

Sensor types. A sensor might also be a human
expert

+id: String
Unique identifyer of the sensor. E.g.
"MicaSense RedEdge-M"

+created: Datetime
Creation time in UTC format

+type: String
Type of sensor. E.g: multispectral, human,
temperature

+id_platform: String (optional)
The platform the Sensor is mounted on (if
applicable)

+description: String
Sensor description

+id_user: String (optional)
Used only if type is 'human'

+extrinsic: jsonObject
View attachment

1

n

<<measurements>>
Measurement

General measurement representation
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_sensor: String
The senor the measurement was recorded by

+type: String
Type of measurement. E.g. "air temperature"

+processing_level: Enum of String
Specifies the processing level of a
measurment to distingluish raw measurements
from higher order products

+unit: String
SI unit. E.g. "m/s"

+value: Float (optional)
Measurement value

+id_task: String (optional)
Used to link a file to a specific task

+id_trial: String (optional)
Used to link a measurement to a specific
trial

+id_activity: String (optional)
Used to link a measurement to a specific
activity

+id_target: String (optional)
A geoObject the measurement is assigned to
(if applicable)

+id_group: String (optional)
Used to aggregate a collection of
measurements

<<trials>>
Trial

Trials of the project
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_task: String
Task the trial is assigned to

+description: String
Description of the trial

+trees: List of String
List of trees assigned to the trial.
GeoElements with type=tree

n

1

n

1

n

1

n

1

n

<<chains>>
Chain

Dynamic configuration of processing chains
+id: String
Identifier. Different versions are specified
by creation time

+created: Datetime
Creation time in UTC format. The latest
version of the chain is executed

+name: String
Name of the processing chain

+chains: List of String (optional)
List of sub-chains (if applicable)

+command: String (optional)
Command or script to execute (if applicable)

+config: jsonObject (optional)
Configuration values of the script (if
applicable)

+description: String
Verbal description of the processing chain

1

n

n

n

1

<<waypoints>>
Waypoint

Represents the planned robot position
+id_route: String
The route the point belongs to

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+latitude: Float
GPS position of the robot in degree

+longitude: Float
GPS position of the robot in degree

+altitude: Float
GPS position of the robot in meters

+yaw: Float
Orientation of the robot in radians

+pitch: Float
Orientation of the robot in radians

+roll: Float
Orientation of the robot in radians

+id_tree: String
Indicates which tree to scan. Reference to
‘GeoObject’ element with type=’tree’

<<routes>>
Route

Describes the path planning
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+locations: List of String
Coarse location of the campaign. Reference
to GeoObject elements

+tasks: List of String
List of tasks the campaign is assigned to

+id_platform: String
Unique identifier of the platform used

1

0-1

<<triggers>>
Trigger

Describes the orientation of a sensor in the moment of
triggering

+id_waypoint: String
Position of the robot at the moment of sensor triggering

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+id_sensor: String
Sensor of the capture

+sensor_parameters: jsonObject
Dictionary describing the sensor parameters selected for
the capture

+yaw: Float
Orientation of the sensor in relation to the robot in
radians

+pitch: Float
Orientation of the sensor in relation to the robot in
radians

+roll: Float
Orientation of the sensor in relation to the robot in
radians

+x: Float
Position of the sensor in relation to the robot in meters

+y: Float
Position of the sensor in relation to the robot in meters

+z: Float
Position of the sensor in relation to the robot in meters1

n

1

n

1

0-1

1

0-1

1

n

1

n

n

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

66

Figure 17 - Full data model schema (part 2 of 2)

<<fieldElements>>
GeoObject

Represents a field element of hazelnut
orchard or other element geo localized

+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+type: String
‘FeatureCollection’ or ‘Feature’

+properties: jsonObject
Property of the object in json format

+geometry: jsonObject
The geometry of the object according to RFC
specification

n

<<damages>>
Damage

All damage type
+id: String
Unique identifier.

+type: String
Type of damage. E.g: abiotic, biotic,...

+generate_alert: Boolean
Checked if alert activate a notification in
the UI

+alert_parameters: jsonObject
Range limit for notification. E.g:
temperature under 0 degrees

<<damageSolutions>>
DamageSolution

Defined solution for damages
+id: String
Unique identifier

+id_damage: String
Identifier of damage

+activity_type: Enum of String
Type of solution applicable to damage. E.g:
activity, insurance, ...

+description: jsonObject
Detail about activity. View attachment

1

n

<<chemicalProducts>>
ChemicalProduct

List af all chemical product available
+id: String
Unique identifier

+created: Datetime
Creation time in UTC format

+type: String
Describe type of product. E.g: herbicide,
pesticide

+limits: List of jsonObject
Terms of use of chemical product

1

n

<<qualityParameters>>
QualityParameter
Defined parameter of quality

+id: String
Unique identifier

+cultivation_type: String
Type of cultivation. E.g: hazelnut, apple,
banana

+name: String
Name of quality parameter. E.g: umidity,
made shelled, defective

+unit_misure: String
Unit of mesurements. E.g: %, difect number

<<qualityBands>>
QualityBand

Defined band of quality
+id: String
Unique identifier

+year: String
Year of validity

+band_name: String
Name of band. E.g: first quality, second
quality, ...

+cultivation_type: String
+cultivation_variety: String
Variety of fruit or cultivation. E.g:
giffoni, tonda romana gentile, nocchione,
...

+cultivation_management_system: Enum of String
Orchard management system. Enum: organic /
conventional / integrated

+values: List of jsonObject
Value of quality parameters that define the
range for quality band

1

n

<<activities>>
Activity

All activities to execute or executed in the
orchard

+id_target: List of String
List of id of ‘GeoObject’ elements that are
targets of activity

+id: String
Unique identifier of activity

+created: Timestamp
Creation time in UTC format

+type: Enum of String
Activity type. View attachment

+status: Enum of String
Status of activity. View attachment

+info: jsonObject
Detail of activity, json format according of
"Activity.info". View attachment

+log: List of Log
Log of all changes made to activity
accordint to "Log" format. View attachment

+comments: List of Comment
All comments to the activity, according to
json format of Comments. View attachment

+id_mission: String
Filled only if activity is contained in a
mission

1

<<missions>>
Mission

Missions planned or executed in the orchard.
+activities: List of String
All activities inserted into the mission.

+id: String
Unique identifier of activity

+created: Timestamp
Creation time in UTC format.

+type: Enum of String
+planned_date: DateTime
Date of planned mission

+start_date: DateTime
Date of mission beginning.

+end_date: DateTime
Date of mission ending.

+status: Enum of String
Status of mision

+id_platform: String
Id of platform used for mission.

+log: List of jsonObject
Log format. View attachment

+equipment: jsonObject
Equipment format. View attachment

1

n

1

1

1

<<priceData>>
PriceData

Sale price of the product and its validity
+id: String
Unique identifier

+created: Timestamp
Creation time in UTC format

+id_quality_band: String
Reference to quality band applied

+price: Float
Selling price

+valid_from: Datetime
Begin of validity

+valid_to: Datetime
End of validity

1

1

<<users>>
User

Web app users
+id: String
Unique identifier

+username: String
Username to access to the UI

+password: String
Hash value of password

+id_fields: List of String (optional)
List of field enabled for the user.
Reference to "GeoObject" collection

+id_roles: List of String
List of user’s roles. Reference to “Role”
collection

1

<<roles>>
Role

Web app roles
+id: String
Unique identifier

+name: String
Name of role

+description: String (optional)
Description of role

1

n

n

nn

1

n 1 1

n

 Precision Farming of Hazelnut Orchards (PANTHEON)

PANTHEON Document D.3.2 Data Management Rel.1.0 20200430

SCADA for Agriculture
PANTHEON

67

6 References

[1] L. Giustarini, S. Lamprecht, R. Retzlaff, T. Udelhoven, N. Rossellò Bono, E. Garone, V. Cristofori, M.
Contarini, M. Paolocci, C. Silvestri, S. Speranza, E. Graziani, R. Stelliferi, R. F. Carpio, J. Maiolini, R.
Torlone, G. Ulivi and A. Gasparri, “PANTHEON: SCADA for Precision Agricolture,” in Handbook of Real-
Time Computing, Springer, 2019.

[2] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer, vol. 49, no. 5, p. 81, 2016.

[3] J. Maiolini, C. Potena, R. F. Carpio, E. Garone and A. Gasparri, “MP-STSP: A Multi-Platform Steiner
Travelling Salesman Problem Formulation for Precision Farming in Large-Scale Orchards,” in ICRA,
2020.

[4] C. Chasseur, Y. Li and J. Patel, “Enabling JSON Document Stores in Relational System,” WebDB, 2013.

[5] IETF (Internet Engineering Task Force), “The GeoJSON Format,” 2016.

[6] C. Fairchild and T. Harman, “ROS nodes, topics, and messages,” in ROS Roborics by Example, Packt,
2017, p. 484.

[7] A. Pulter, S. Johnston and S. Cox, “Using the MEAN stack to implement a RESTful service fon an
Internet of Things application,” in 2015 IEEE 2nd World Forum on Internet of Thinghs (WF-IoT), Milan,
Italy, 2015.

[8] S. Lamprecht, “Pyoints: A Python package for point cloud, voxel and raster processing,” Journal of
Open Source Software, vol. 4, no. 36, p. 990, 2019.

[9] Agisoft LLC, Metashape Python Reference (Release 1.6.2), 2020.

[10] Agisoft LLC, Agisoft Metashape User Manual (Version 1.6), 2020.

[11] M. Dirolf, PyMongo - the Python driver for MongoDB, 2020.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E.
Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825--2830, 2011.

