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Executive Summary 

This document proposes a framework to assign the farming operations required by the decision-making 
process of the project to the robotics platforms or   at our disposal. In particular, the proposed framework is 
composed of two modules: the first one is designed for task allocation when no precedence constraints 
between pairs of farming operations are involved, whereas the second one builds upon the first module to 
provide a solution when a sequence of operations is required to be completed before another can start. 
Applicative examples of the proposed framework to different contexts conclude the document. 
 
The results described in this deliverable have been submitted for publications to the conference 20th 
International Conference on Advanced Robotics (ICAR) (http://icar-2021.org/). 
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Abbreviations and Acronyms 
 

UGV Unmanned Ground Vehicle 

UAV Unmanned Aerial Vehicle 

3D Three Dimensional 

RGB Red Green Blue 
RGBD Red Green Blue Depth 

LiDAR Light Detection and Ranging 

NP Nondeterministic Polynomial (time) 
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1 Introduction 
 
The given document comprises a detailed description of task T3.4 – Planner of Farming Activities addressing 
PANTHEON’s Objective 1.4. This objective is accomplished through the use of two modules that solve the 
task allocation and task scheduling problems, respectively. Specifically, the task allocation module is built 
from the adaptation of the matroidal optimization problem proposed in [1] where the authors addressed the 
task allocation problem by applying the combinatorial theory of matroids. In our context, matroidal 
constraints will be used to model the abstract notion of agent-task constraints, allowing us to encode the 
fact that a robot may be able to treat suckers with herbicides but at the same time not be able to collect 
RGBD data due to energy/battery constraints. The task allocation module however does not consider the 
presence of precedence constraints between different pairs of agronomical operations. These constraints 
are instead handled by the task scheduling module through the use of a Petri Net as done in [2], [3]. In 
particular, each agronomical operation is associated to a place of the Petri Net and each precedence 
constraint models a transition of the Net. In this way, when an operation is completed the transition towards 
the next constrained operation is enabled and can hence start. As it will be shown later, the task schedule 
module focuses only on dealing with the precedence constraints while leaving the job of allocating the 
required activities to the first module. A representative application of our agronomical scenario is used to 
validate the effectiveness of the proposed framework. 
 
To the best of our knowledge, the framework presented in this deliverable represents the first attempt ever 
in allocating and scheduling tasks subjected to independent matroidal constraints modeling different feasible 
pairs of activities for a multi-agent team. Indeed, exploiting and adapting the results of [1], [2], and [3] to the 
precision farming context, our framework is able to find a feasible task assignment and allocation for teams 
of agents which may be capable of doing at the same time only a set of certain activities. To the best of our 
knowledge, the only work that address a problem similar to ours is [4] in which the authors propose a 
polynomial-time algorithm that yields a (2 + 𝜖)-approximation for the preemptive concurrent open shop 
scheduling problem that consider the presence of a matroidal constraint for the task that have to be 
allocated. However, their modeling focuses only on the task as entities hence not considering the many facets 
that arise when different sets of agronomical operations and devices equipped by the agents are paired 
together. Other works at the state of the art which consider matroidal constraints for scheduling problems 
of teams of agents in their problem formulation are [5] and [6]. Specifically, in [5] a control scheduling 
problem, i.e., the problem of as-signing agents to react upon a discrete time dynamical system, is solved by 
a greedy algorithm when the objective function to be minimized by the team of agents possesses a particular 
property known as 𝛼-supermodularity. The authors in [6] propose a greedy algorithm for the solution of a 
scheduling problem expressed by matroidal constraints which address the recharge of wireless sensor 
networks. However, all of these works do not fit with the needs that a team equipped with different devices 
for different activities may require and for this reason we propose a novel task allocation and scheduling 
framework. 
 
The remainder of the deliverable is organized as follows: 
 

• In Section 2 preliminary notions concerning matroid theory, submodular optimization, and Petri Nets 
are given. 

• Section 3 introduces the task allocation problem and explains how the intersection of matroids can 
be used to model our agronomical scenario. 

• In Section 4 the task scheduling problem is introduced along with the Petri Net framework that will 
be used to solve it. 

• Section 5 details how the frameworks introduced in Section 3 and Section 4 can be integrated to 
obtain a feasible solution for the allocation and scheduling problem at hand. 

• Finally, in Section 6 numerical validations are given to corroborate the proposed framework. 
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2 Preliminaries 
 
In this section we introduce the notation that will be used in the rest of the document as well as a quick 
review of the concepts of matroids, submodularity, and Petri Net. 
 

2.1 Notation 
 
We denote vectors and matrices by boldface lowercase letters and uppercase letters, respectively, and 
denote the 𝑖-th component of vector 𝐱 by 𝑥𝑖 and the (𝑖, 𝑗)-th entry of the matrix 𝐴 by 𝐴𝑖𝑗. The vectors with 

entries all equal to zero (one) are denoted by 𝟎𝑛 (𝟏𝑛). The 𝑛 × 𝑛 identity matrix is indicated by 𝐼𝑛, whereas 
0𝑛×𝑚 is used to denote the 𝑛 × 𝑚 zero matrix. 
 
Given a set 𝒮 we denote by |𝒮| its cardinality, i.e., the number of elements contained in 𝒮. Furthermore, we 
define by 𝔹 the domain of Boolean numbers, i.e., 𝔹 = {0,1}, ℕ the set of natural numbers, i.e., ℕ =
{1,2,3, … }, and ℕ0 the set of natural numbers and the zero, i.e., ℕ0 = ℕ ∪ {0}. 
 
We denote the logical operations of “not”, “or”, and “and” as ¬, ∨, and ∧, respectively. Furthermore, given 

two Boolean matrices 𝐴 ∈ 𝔹𝑛×𝑚 and 𝐵 ∈ 𝔹𝑚×𝑙 we define the logical matrix product 𝐶 = 𝐴 ⊙ 𝐵 with 𝐶 ∈

𝔹𝑛×𝑙 where each element 𝐶𝑖𝑗  is 

 

𝐶𝑖𝑗 = ⋁(𝐴𝑖𝑘 ∧ 𝐵𝑘𝑗)

𝑚

𝑘=1

, 𝑖 ∈ {1,… , 𝑛},  𝑗 ∈ {1,… , 𝑙}. 

 
For example, consider the Boolean matrix 𝐴 ∈ 𝔹3×5 and the Boolean vector 𝐱 ∈ 𝔹5 defined as  
 

𝐴 = [
0
1
0

1
0
1

0
1
1

0
1
0

1
0
0
] ,      𝐱 =

[
 
 
 
 
1
0
0
1
0]
 
 
 
 

 . 

 
The logical matrix product 𝐶 = 𝐴 ⊙ 𝐱 is the Boolean vector 𝐶 ∈ 𝔹3 built as 
 

𝐶 = [
0 1 0 0 1
1 0 1 1 0
0 1 1 0 0

] ⊙

[
 
 
 
 
1
0
0
1
0]
 
 
 
 

= [

(0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 0)
(1 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0)
(0 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0)

] = [
0 ∨ 0 ∨ 0 ∨ 0 ∨ 0
1 ∨ 0 ∨ 0 ∨ 1 ∨ 0
0 ∨ 0 ∨ 0 ∨ 0 ∨ 0

] = [
0
1
0
] .

 

 
Finally, let us introduce a vector function 𝜑(⋅) which maps a vector of integer values to a vector of Boolean 
values of the same dimension such that each entry is equal to 1 if the argument of 𝜑(⋅) is greater than 0, and 
0 otherwise.  
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For example, consider the vector 𝐯 ∈ ℕ0
6 defined as 𝐯 = [1,2,0,3,1,0]𝑇 , then 𝜑(𝐯) ∈ 𝔹6 is the vector 𝜑(𝐯) =

[1,1,0,1,1,0]𝑇 . 
 

2.2 Matroid Theory 
 
In this section we review the notion of matroids. Matroids are a mathematical tool that abstracts and 
generalizes the notion of linear independence for vectors. A reason of interest for matroids in the field of 
combinatorial optimization is their association with submodular set functions and greedy algorithms who can 
guarantee optimality bounds. There are many ways to define a matroid; we adopt the more common one 
based on the concept of independence. For a more in-depth review of the argument the reader is referred 
to [4]. 
 
Definition 1 (Matroid).  A matroid ℳ on 𝐸 is an ordered pair (𝐸, ℐ) consisting of a finite set 𝐸, denoted as 
the ground set of ℳ, and a collection ℐ of subsets of 𝐸, denoted as the independent sets of ℳ, satisfying the 
following three conditions: 
 

I. ∅ ∈ ℐ; 
II. Every subset of an independent set is independent, i.e., if 𝑋 ∈ ℐ and 𝑌 ⊆ 𝑋, then 𝑌 ∈ ℐ; 

III. If 𝑋 and 𝑌 are independent sets, i.e., 𝑋, 𝑌 ∈ ℐ, and |𝑋| < |𝑌|, then there is an element 𝑒 ∈ 𝑌\𝑋 such 
that 𝑋 ∪ {𝑒} ∈ ℐ. 

 
Condition c) is referred to as independence augmentation axiom, and essentially states that if 𝑋 is an 
independent set and there exists a larger independent set 𝑌, then 𝑋 can be extended to a larger independent 
set by adding an element of 𝑌\𝑋. Condition c) also implies that every maximal independent set is maximum 
from which we can infer that all maximal independent sets have the same cardinality. 
 
A subset of 𝐸 that is not in ℐ is called dependent. A maximal independent set is called base of the matroid, 
while a minimal dependent set is called circuit of the matroid. 
 
Different independence rules define different matroids. Some of the most famous and used in literature are 
the following: 
 

• Uniform matroid. The independence rule is defined as 
 

ℐ = {𝑋 ⊆ 𝐸: |𝑋| ≤ 𝑘}, 
 

for a given 𝑘 ∈ ℕ with 𝑘 ≤ |𝐸|. In this type of matroid a base is any set that has cardinality equal to 
𝑘. 

• Partition matroid. In this matroid the ground set 𝐸 is partitioned in ℓ disjoint subsets 𝐸1, … , 𝐸ℓ and 
the independence rule is 
 

ℐ = {𝑋 ⊆ 𝐸: |𝑋 ∩ 𝐸𝑖| ≤ 𝑘𝑖 ,  𝑖 = 1,… , ℓ}, 
 

for given 𝑘𝑖 ∈ ℕ. 
• Linear matroid. Consider a matrix 𝐴 and let the ground set 𝐸 be the set of column indices of the 

matrix 𝐴. For a subset 𝑋 ⊆ 𝐸, let 𝐴𝑋  denote the submatrix of 𝐴 composed only of those columns 
indexed by the elements in 𝑋. The independence rule is 
 

ℐ = {𝑋 ⊆ 𝐸:rank(𝐴𝑋) = |𝑋|}, 
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meaning that a indices set is independent only if the indexed columns are linearly independent. It 
follows that a base of a linear matroid correspond to set of columns of cardinality rank(𝐴). Notably, 
the name matroid originates from this type of matroid. 
 

In order to explain the basic concepts of a matroid to the reader, let us consider the following linear matroid. 
 
Example 1.  Consider the matrix 𝐴 ∈ ℝ2×5 defined as 
 

𝐴 = [
2 0 0 3 1
0 1 0 0 1

]. 

 
Consider the associated matroid ℳ with ground set 𝐸 = {1,2,3,4,5} denoting the indices of the ℝ2 vectors 
composing matrix 𝐴. The independence set ℐ collecting the indices of independent vectors in 𝐴 is then 
 

ℐ = {∅, {1}, {2}, {4}, {5}, {1,2}, {1,5}, {2,4}, {2,5}, {4,5}}. 
 
The set of dependent indices 𝒟 is instead 
 

𝒟 = {{3}, {1,3}, {1,4}, {2,3}, {3,4}, {3,5}} ∪ 𝑋3. 
 
where 𝑋3 is the set collecting all substes of three or more elements of the ground set 𝐸, i.e., 𝑋3 = {𝑋
⊆ 𝐸: |𝑋| ≥ 3}. The set collecting all bases of the matroid ℳ, i.e., the maximal indepedenent sets of ℳ, is 

ℬ = {{1,2}, {1,4}, {2,4}, {2,5}, {4,5}}. Finally, the set collecting the circuits of ℳ, i.e., sets whose proper 

subsets are independent, is 𝒞 = {{3}, {1,4}, {1,2,5}, {2,4,5}}. 

 
In this work, we will utilize the power of expressiveness encoded by matroids to model abstract 
independence constraints in the multi-agent task allocation problem whereby multi-agent we refer to the 
presence of multiple robotics platforms as Unmanned Ground Robots (UGVs) or Unmanned Aerial Robots 
(UAVs) as well as human operators on the field. 
 

2.3 Matroid Optimization and Submodularity 
 
In our multi-agent task allocation problem, we are interested in finding feasible solution satisfying matroid 
independence constraints, i.e., problems of the following form. 
 
Problem 1.  Consider a matroid ℳ = (𝐸, ℐ), and a set function 𝑓: 2𝐸 → ℝ, then define: 
 

 max
𝒮⊆𝐸

𝑓(𝒮)

s.t. 𝒮 ∈ ℐ
 (1) 

 
Notably problems in the form of eq. (1) are generally NP-Hard [8]. However, when function 𝑓(⋅) satisfies 
certain requirements, guarantees of optimality performances can be given for solutions obtained by greedy 
algorithms. Specifically, when 𝑓(⋅) is submodular, Problem Problem 1 is still NP-Hard but greedy algorithms 
are able to obtain good approximation ratios which in certain cases are also the best-known results in 
literature [5]. 
 
We now quickly review the notion of submodularity; for a better understanding of the topic, the reader is 
referred to [5],[6]. 
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Definition 2 (Submodularity).  A set function 𝑓: 2𝐸 → ℝ is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝐸 and 𝑒 ∈ 𝐸\𝐵 
it holds that 
 

 𝑓(𝐴 ∪ {𝑒}) − 𝑓(𝐴) ≥ 𝑓(𝐵 ∪ {𝑒}) − 𝑓(𝐵). (2) 
 
Based on eq. (2), submodularity implies that after performing a set 𝐴 of actions which provide a benefit 𝑓(𝐴), 
the marginal benefit of any additional action 𝑒 does not increase if we perform any of the actions in 𝐵\𝐴. 
Hence, submodular set functions exhibit a natural diminishing returns property. When eq. (2) is satisfied to 
the equality, then function 𝑓(⋅) is said modular. 
 
Another important class of set functions are monotone functions, which are defined as follows. 
 
Definition 3 (Set Function Monotonicity).  A set function 𝑓: 2𝐸 → ℝ is monotone if for every 𝐴 ⊆ 𝐵 ⊆ 𝐸 it 
holds that 𝑓(𝐴) ≤ 𝑓(𝐵). 
 
When Problem Problem 1 considers a monotone submodular set function 𝑓(⋅) then it is proven that a greedy 

algorithm can achieve a 
1

2
 - approximation ratio, i.e., the value of the solution 𝒮 found by the greedy algorithm 

satisfies 𝑓(𝒮) ≥
1

2
𝑓(𝒮⋆) where 𝑓(𝒮⋆) is the value of the optimal solution [5]. 

 
A greedy algorithm is a fast and easy-to-implement problem-solving heuristic which consists in choosing the 
best local solution at each step of the algorithm. Briefly, a greedy algorithm in charge of solving a problem in 
the form of eq. (1), starts from an empty set and adds at each step an element which i) maximizes the 
marginal benefit and ii) maintains the solution set independent. To build an independent solution, greedy 
algorithms require to know if a set is independent or not, i.e., require the presence of the so-called 
independence oracle, whose formal definition is given hereinafter. 
 
Definition 4 (Independence Oracle).  Given a matroid ℳ = (𝐸, ℐ), an independence oracle 𝛹(𝑋) for all 𝑋 ⊆
ℐ is a function defined as 

𝛹(𝑋) = {
True if 𝑋 ∈ ℐ,
False if 𝑋 ∉ ℐ.

 

 
Given an independence oracle 𝛹(⋅), the structure of a greedy algorithm able to solve Problem Problem 1 is 
summarized in Algorithm 1. 
 
 

 
Algorithm 1 - Greedy algorithm's pseudocode for Problem 1. 
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2.4 Matroid Intersection 
 
As introduced earlier, in this work we use a matroid to encode abstract independence constraints in the 
multi-agent allocation problem. In a general problem formulation, however, there may be more constraints 
that need be considered to represent the system at hand, e.g., the fact that a task may be assigned to a single 
robot only or the fact that every task must be assigned. In order to encode different kinds of constraints in 
the matroid domain, the matroid intersection is used. 
 
Theorem 1 (Matroid Intersection [5]).  Consider the matroid intersection system given by the intersection of 
𝑝 matroids ℳ1, … ,ℳ𝑝 as 

 
 

⋂ ℳ𝑖

𝑝

𝑖=1

= (𝐸, ⋂ℐ𝑖

𝑝

𝑖=1

),  (3) 

 
where ℳ𝑘 = (𝐸, ℐ𝑖) are matroids and 𝐸 is a common ground set. The independence system in eq. (3) models 
any arbitrary (and possibly non-matroidal) independence system. 
 
We have now the necessary tools to generalize the scope and utility of the optimization problem introduced 
in Problem Problem 1. 
 
Problem 2.  Consider a monotone (sub)modular set function 𝑓: 2𝐸 → ℝ and a set of 𝑝 matroids 𝕄 =
{ℳ1,… , ℳ𝑝} on a common ground set 𝐸, then define: 

 
 max

𝒮⊆𝐸
 𝑓(𝒮)

s.t.   𝒮 ∈ ⋂ ℳ

ℳ∈𝕄

  (4)  

 
Naturally, greedy algorithms are able to solve also optimization problems in the form of eq. (4). Specifically, 

let 𝒮⋆ be the optimal solution and 𝒮𝐺  be the solution found by the greedy algorithm. Then the following 
results on the optimality of the solution are known. 
 
Theorem 2 (Greedy Approximation [5]).  Consider Problem 2 with a monotone submodular objective function. 
Then the solution 𝒮𝐺  found by the greedy algorithm satisfies 
 

𝑓(𝒮𝐺) ≥
1

𝑝 + 1
 𝑓(𝒮⋆), 

 
where 𝑝 is the number of matroids involved in the intersection, i.e., 𝑝 = |𝕄|.  In addition, when the objective 
function is monotone modular, the bound is improved to 
 

𝑓(𝒮𝐺) ≥
1

𝑝
 𝑓(𝒮⋆). 

 
The results of Theorem 2 shows that the quality of the solution of the greedy algorithm depends on the 
number of matroidal constraints involved in the intersection matroid. Specifically, the greater the number of 
matroidal constraints, the worse the optimality guarantee gets. 
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2.5 Petri Net 
 
Petri Nets are a class of a mathematical modeling language for discrete event systems. A Petri Net consists 
of three basic elements: places, transitions, and arcs. Arcs link places to transitions and transitions to places. 
Places from which an arc starts and arrives to a transition are called input places whereas if an arc starts from 
a transition and arrives to a place, that place is called output place. Each place is associated to a number of 
marks called tokens, which can vary between none and a positive integer number. A transition can be fired if 
it is enabled, i.e., if all of its input places contain a sufficient number of tokens. When a transition is fired, the 
tokens are removed from its input places and added to its output places. 
 
The formal definition of a Petri Net and a Marked Petri Net are given hereinafter. 
 
Definition 5 (Petri Net).  A Petri Net is a triplet (𝑃, 𝑇,𝑊) in which 𝑆 is a finite set of places, 𝑇 a finite set of 
transitions and 𝑊 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a multiset collecting the arcs of the Petri Net. The places and 
transitions sets are disjoint, i.e., 𝑆 ∩ 𝑇 = ∅ and the arcs do not link two places or two transitions. 
 
Definition 6 (Marked Petri Net).  A marked Petri Net is a tuple (𝑃, 𝑇,𝑊,𝑀0) where (𝑃, 𝑇, 𝑊) is a Petri Net 
and 𝑀0 is an initial marking of the Petri Net, i.e., the set of initial tokens of the net. 
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3 Task Allocation 
 
In this section, we introduce the multi-agent allocation problem that we intend to use to model the allocation 
of farming operations. The problem is adapted to the needs of the project from the work [1]. 
 

3.1 Problem Definition 
 
Let us introduce the basic elements from which the problem formulation expressed by a matroid intersection 
will be derived. 
 
Definition 7 (Agents).  Let 𝐴 = {𝑎1,… , 𝑎𝑛} denote the set of agents of size 𝑛 which can be assigned to 
perform the farming operations. For instance, agents can be UGVs, UAVs, or agronomical experts. 
 
Definition 8 (Devices).  Let 𝐷 = {𝑑1,… , 𝑑𝑚} denote the set of devices of size 𝑚 which are equipped by the 
agents and are required to perform the farming operations. For instance, possible devices can be an RGBD 
camera sensor, a LIDAR scanning sensor, or an herbicide sprayer. 
 
Definition 9 (Operations).  Let 𝑂 = {𝑜1, … , 𝑜𝑞} denote the set of farming operations of size 𝑞 which needs to 

be executed in the field such as suckers’ management or water stress level assessment. 
 
The multi-agent allocation problem is solved if a feasible allocation for every operation 𝑂 is found. In our 
context, each operation requires the usage of a single device to be accomplished. For instance, the 3D tree 
reconstruction operation can be achieved if the LIDAR scanner sensor is used. As an example, consider the 
scenario depicted in Figure 1 where there are a set of 5 devices (sensors) and a set of 3 farming operations 
that need to be accomplished. For example, the first farming operation 𝑜1, i.e., the 3D tree reconstruction, 
can be achieved by using the LIDAR scan sensor 𝑑1, the RGB camera sensor 𝑑2, or the multi-spectral camera 
sensor 𝑑3. To encode these three possibilities, we represent the feasible pairs as couples (𝑑1, 𝑜1), (𝑑2, 𝑜1), 
and (𝑑3, 𝑜1). In the rest of the document, we are going to refer to pairs of operations and devices also as 

activities, i.e., an activity is a couple (𝑑𝑗 , 𝑜𝑘) with 𝑑𝑗 ∈ 𝐷 and 𝑜𝑘 ∈ 𝑂. 
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Figure 1 - Scenario of possible associations between devices and operations. A couple (𝑑𝑗,𝑜𝑘) denotes the feasibility of the operation 𝑜𝑘 

with device 𝑑𝑗. 

Our multi-agent task allocation problem consists in assigning activities to agents trying to maximize a return 

value from the selected allocation. For this reason, we consider an allocation as a triplet (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) with 𝑎𝑖 ∈

𝐴, 𝑑𝑗 ∈ 𝐷, and 𝑜𝑘 ∈ 𝑂 which can be read as “agent 𝑎𝑖 performs operation 𝑜𝑘 using device 𝑑𝑗”. 

 
Having described the basic modeling, we can now proceed introducing the concept of abstract independence 
constraints that we want to model with matroids. Consider again the scenario depicted in Figure 1 and 
assume there is a ground robot 𝑎1 who is equipped with sensors 𝑑1, 𝑑2, and 𝑑3. Suppose that the robot 
needs to carry out operations 𝑜1 and 𝑜3. From the possible pairs data, we know that operation 𝑜1 can be 
carried out using any of the three sensors that the robot is equipped with, whereas operation 𝑜3 can only be 
carried out using sensors 𝑑2 or 𝑑3. We want now to model the fact that the robot may not be capable to 
perform certain activities together, e.g., the battery of the robot may add a constraint that prevents the 
combined use of the LIDAR scan sensor (𝑑1) for the tree reconstruction (𝑜1) with the use of the RGB camera 
(𝑑2) for the water stress analysis (𝑜3). Hence, in the final allocation, the triplets (𝑎1, 𝑑1, 𝑜1) and (𝑎1, 𝑑2, 𝑜3) 
could not coexist. From a matroidal point of view this constraint is translated to the dependence of the set 
collecting the two triplets, i.e., {(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑2, 𝑜3)} ∉ ℐ, meaning that in a solution the two assignments 
would not be present.  
 
To expand upon the scenario introduced in Figure 1, consider the possible independent allocation depicted 
in Figure 2. There are three robots 𝑎1, 𝑎2, and 𝑎3 which are associated with different sets of activities, 
represented by circles. A single circle represents the fact that the activity associated to that colored circle 
must be carried out by the robot individually, i.e., no other activity can be assigned to the robot; a couple of 
circles instead represent the fact those two activities associated with the colored circles can be performed 
together by the robot; the same goes for a triplet of circles and so on. For example robot 𝑎1 can individually 
perform operation 𝑜1 or operation 𝑜2 with one of any of the sensors it is equipped with; robot 𝑎1 could also 
perform operation 𝑜1 using at the same time sensor 𝑑1 and sensor 𝑑2 whereas it is not be able to perform 
any of the activities for operation 𝑜1 while at the same time performing some other activities for operation 𝑜2 
since there are no couples of circles that involve at the same time any of the colors among yellow, orange, 
and red associated to operation 𝑜1 with any of the colors azure, blue, and violet associated to operation 𝑜2. 
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Finally, given the chance, robot 𝑎1 could also execute operation 𝑜1 using all three sensors at once as 
represent by the triplet of yellow, orange, and red circles. 
 
 

 
Figure 2 - Scenario of independent allocations to a set of three agents. Each colored circle corresponds to a couple (𝑑𝑗,𝑜𝑘) with 

operation 𝑜𝑘 and device 𝑑𝑗 as described in Figure 1. An individual circle means that the agent can perform the combination of 

operation and device only. Two paired circles mean that the agent can be assigned to those two pairs of operation/device at the same 
time and so on. 

 
In a more formal way, the feasible allocations for each agent 𝑎𝑖 can be described by an independence set ℐ𝑎𝑖

 

which will contain all the activities that can be assigned to agent 𝑎𝑖. Consider the scenario illustrated in Figure 
1 and expanded in Figure 2, the possible allocations for robot 𝑎1 are described by the independence set ℐ𝑎1

 

defined as: 
 

ℐ𝑎1
= { {∅}, {(𝑎1, 𝑑1, 𝑜1)}, {(𝑎1, 𝑑2, 𝑜1)}, {(𝑎1, 𝑑3, 𝑜1)},

{(𝑎1, 𝑑2, 𝑜3)}, {(𝑎1, 𝑑3, 𝑜3)},

{(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑2, 𝑜1)}, {(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑3, 𝑜1)},

{(𝑎1, 𝑑2, 𝑜1), (𝑎1, 𝑑3, 𝑜1)}, {(𝑎1, 𝑑2, 𝑜3), (𝑎1, 𝑑3, 𝑜3)},
{(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑2, 𝑜1), (𝑎1, 𝑑3, 𝑜1)}    }.

 

 
Similarly, assuming that agent 𝑎2 is equipped with at least devices 𝑑1, 𝑑4, and 𝑑5, the independent 
allocations for agent 𝑎2 are encoded by the independence set ℐ𝑎2

: 

 
ℐ𝑎2

= {     {∅}, {(𝑎2, 𝑑1, 𝑜1)}, {(𝑎2, 𝑑4, 𝑜2)}, {(𝑎2, 𝑑5, 𝑜3)}     }. 

 
Finally, concerning the possible allocations of agent 𝑎3, its independence set ℐ𝑎3

 is: 

 
ℐ𝑎3

= { {∅}, {(a3, 𝑑2, 𝑜1)}, {(𝑎3, 𝑑3, 𝑜1)}, {(𝑎3, 𝑑2, 𝑜3)},

{(𝑎3, 𝑑3, 𝑜3)}, {(𝑎3, 𝑑5, 𝑜3)}, {(𝑎3, 𝑑2, 𝑜3), (𝑎3, 𝑑3, 𝑜3)},

{(𝑎3, 𝑑2, 𝑜3), (𝑎3, 𝑑5, 𝑜3)}, {(𝑎3, 𝑑3, 𝑜3), (𝑎3, 𝑑5, 𝑜3)},

{(𝑎3, 𝑑2, 𝑜3), (𝑎3, 𝑑3, 𝑜3), (𝑎3, 𝑑5, 𝑜3)}     },

 

 
where it is assumed that agent 𝑎3 is equipped at least with devices 𝑑2, 𝑑3, and 𝑑5. 
 

3.2 Problem Formulation 
 
We have now the necessary tools to state the multi-agent task allocation problem as a matroid intersection 
optimization problem. 
 
Problem 3 (Multi-Agent Task Allocation).  Consider a set of agents, devices and operations described 
according to Definition 7, Definition 8, and Definition 9. Define a common ground set 𝐸 as 
 

𝐸 = {(𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘): 𝑎𝑖 ∈ 𝐴, 𝑑𝑗 ∈ 𝐷, 𝑜𝑘 ∈ 𝑂}, 
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and a utility function 𝑢(⋅): 2𝐸 → ℝ for all elements (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) ∈ 𝐸. Furthermore, consider that each agent 

𝑎𝑖 ∈ 𝐴 is associated to an independent set ℐ𝑎𝑖
 collecting the feasible pairs of devices and operations that can 

performed by agent 𝑎𝑖. Then, the multi-agent task allocation problem is encoded by the following 
formulation: 
 

 max
𝒮⊆𝐸

∑ 𝑢

(𝑎𝑖,𝑑𝑗,𝑜𝑘)∈𝒮

(𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘)

 s.t. 𝒮 ∈ ℳ1 ∩ ℳ2

  (5) 

 
where ℳ1 and ℳ2 are matroids encoding the two constraints described hereinafter: 
 

I. Each pair of device and operation (activity) (𝑑𝑗 , 𝑜𝑘) cannot be allocated more than once. This is 

encoded by the matroid ℳ1 = (𝐸, ℐ1); 
II. The allocations of each agent 𝑎𝑖 must lie in the independent set ℐ𝑎𝑖

. This is encoded by the matroid 

ℳ2 = (𝐸, ℐ2). 
 

Finally, we assume that the given sets 𝐴, 𝐷, 𝑂, and ℐ𝑎𝑖
 with 𝑎𝑖 ∈ 𝐴 admit a feasible solution to the problem. 

 
Let us now properly introduce the independence sets associated with the matroids ℳ1 and ℳ2 defying the 
desired constraints described in points I and II. 
 
Constraint I is encoded by the following independence set: 
 

ℐ1 = {𝒮 ⊆ 𝐸: |𝒮 ∩ 𝐺𝑗𝑘| ≤ 1,  ∀ (𝑑𝑗 , 𝑜𝑘) with 𝑑𝑗 ∈ 𝐷, 𝑜𝑘 ∈ 𝑂}, 

 
where 𝐺𝑗𝑘 are sets of triplets collecting the possible agents’ allocation for a given pair of device 𝑑𝑗  and 

operation 𝑜𝑘, i.e., 𝐺𝑗𝑘 = {(𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘): 𝑎𝑖 ∈ 𝐴}. 

 
Constraint II is encoded by the following independence set: 
 

ℐ2 = {𝒮 ⊆ 𝐸: |𝒮 ∩ ℐ𝑎𝑖
| = 1,  ∀ 𝑎𝑖 ∈ 𝐴}, 

 
where ℐ𝑎𝑖

 are the sets of independent and feasible allocations for agent 𝑎𝑖. 

 
Theorem 3. The independence systems ℳ1 and ℳ2, as defined in eq. (5) for Problem 3, are matroidal.  
 
Proof. In order to prove this result, we verify the three axioms introduced in Definition 1 for each matroid. 
 
Matroid ℳ1: 
 
Axiom I): 

Consider the subset 𝒮 = {∅}. The independence rule |𝒮 ∩ 𝐺𝑗𝑘| ≤ 1 is then satisfied for any 𝐺𝑗𝑘 with 𝑑𝑗 ∈ 𝐷 

and 𝑜 ∈ 𝑂 since |𝒮 ∩ 𝐺𝑗𝑘| = 0. Axiom I) is hence verified. 

 
Axiom II): 

Consider a set 𝒮1 ⊆ 𝐸 satisfying independence rule ℐ1, i.e., |𝒮1 ∩ 𝐺𝑗𝑘| ≤ 1 (𝒮1 ∈ ℐ1). This implies that there 

exists a unique element (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) ∈ 𝒮1 for each pair (𝑑𝑗 , 𝑜𝑘) with 𝑑𝑗 ∈ 𝐷 and 𝑜𝑘 ∈ 𝑂. For some subset 𝒮2 ⊆
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𝒮1 and for each pair (𝑑𝑗 , 𝑜𝑘), then there will always exists a unique element (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) ∈ 𝒮2 satisfying 

|𝒮2 ∩ 𝐺𝑗𝑘| ≤ 1. Axiom II) is hence proven. 

 
Axiom III): 
Consider two sets 𝒮1, 𝒮2 ∈ ℐ1 and assume that |𝒮1| > |𝒮2| > 0. We will now prove the axiom by 
contradiction. Assume that no element 𝑒 ∈ 𝒮1\𝒮2 can be added to 𝒮2 while maintaining the independence 

rule valid, i.e., ∄ 𝑒 ∈ 𝒮1\𝒮2: {𝑒} ∪ 𝒮2 ∈ ℐ1. This implies that all pairs (𝑑𝑗 , 𝑜𝑘) have been allocated in 𝒮2, i.e., 

|𝒮2| = |𝒜| where 𝒜 is the set collecting all pairs (𝑑𝑗 , 𝑜𝑘). However, since by definition |𝒮1| ≤ |𝒜| and by 

hypothesis |𝒮1| > |𝒮2|, the contradiction arises thus proving axiom III). 
 
Matroid ℳ2: 
 
Axiom I): 

Consider the subset 𝒮 = {∅}. The independence rule |𝒮 ∩ ℐ𝑎𝑖
| = 1 for any ℐ𝑎𝑖

 with 𝑎𝑖 ∈ 𝐴 holds by 

construction since the independence sets ℐ𝑎𝑖
 contain the empty set ∅. Axiom I) then holds true. 

 
Axiom II): 

Consider a set 𝒮1 ⊆ 𝐸 satisfying independence rule ℐ2, i.e., |𝒮1 ∩ ℐ𝑎𝑖
| = 1 (𝒮1 ∈ ℐ2). This implies that there 

exists a unique element 𝑒𝑖
1 ∈ 𝒮1 for each agent 𝑎𝑖 ∈ 𝐴. For some subset 𝒮2 ⊆ 𝒮1 and each agent 𝑎𝑖 then 

there will always exists a unique element 𝑒𝑖
2 ∈ 𝒮2 satisfying |𝒮2 ∩ ℐ𝑎𝑖

| = 1. Axiom II) is hence proven. 

 
Axiom III): 
Consider two sets 𝒮1, 𝒮2 ∈ ℐ1 and assume that |𝒮1| > |𝒮2|, i.e., 𝒮1\𝒮2 ≠ ∅. We will now prove the axiom by 
contradiction. Assume that no element 𝑒 ∈ 𝒮1\𝒮2 can be added to 𝒮2 while maintaining the independence 
rule valid, i.e., ∄ 𝑒 ∈ 𝒮1\𝒮2: {𝑒} ∪ 𝒮2 ∈ ℐ1. This implies that the set 𝒮2 is a base for the matroid ℳ2. In turn, 
this implies that the cardinality |𝒮2| is maximal. However, since by hypothesis |𝒮1| > |𝒮2|, the contradiction 
arises thus proving axiom III). 
 
 
Having detailed the structure of the matroid intersection, we can now characterize the performance 
properties of the greedy algorithm introduced in Algorithm 1 when used for Problem 3. 
 
Corollary 1.  The greedy algorithm introduced in Algorithm 1 solves Problem 3 with the following optimality 
bound: 

𝑓(𝒮) ≥
1

2
 𝑓(𝒮⋆). 

 
Proof. The result follows from the application of Theorem 2 in the case of a monotone modular function 𝑓(⋅) 
with 𝑝 = 2. 
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4 Task Scheduling 
 

4.1 Model Definition 
 
So far, we have described allocation of tasks with no consideration for possible precedence constraints 
between activities or different processing times. In this section we will introduce a discrete event system 
based on a Petri Net [2], [3] that is capable of handling the presence of precedence or time constraints in the 
multi-agent task allocation problem. We consider each operation to be non-preemptive, i.e., the execution 
of an operation cannot be interrupted. Let us now introduce the following definitions that will model the 
discrete event system. 
 
Definition 10 (Input).  Let 𝑈 be the set of input events which may trigger the start of one or more 

operations 𝑜 ∈ 𝑂, e.g., a sensor input or a user’s command. Furthermore, let 𝐮(𝜏) ∈ 𝔹|𝑈| be the vector 
collecting the active input events at time 𝜏, i.e., the 𝑖-th element of 𝐮(𝜏) is equal to 1 if the 𝑖-th input event 
has been enabled, and 0 otherwise. 
 
Definition 11 (Output).  Let 𝑌 be the set of output events which represent the completion of one or more 

operations 𝑜 ∈ 𝑂. Furthermore, let 𝐲(𝜏) ∈ 𝔹|𝑌| be the vector collecting the active output events at time 𝜏, 
i.e., the 𝑖-th element of 𝐲(𝜏) is equal to 1 if the 𝑖-th output event has been enabled, and 0 otherwise. 
 
Definition 12 (Rule).  Let 𝑋 be the set of rules which are logical elements linking pairs of operations, 
representing possible transitions in a Petri Net. Rules hence represent precedence constraints among the 

operations. Furthermore, let 𝐱(𝜏) ∈ 𝔹|𝑋| be the vector collecting the activation of rules at time 𝜏, i.e., the 𝑖-
th element of 𝐱(𝜏) is equal to 1 if the 𝑖-th rule has been fired, and 0 otherwise. 
 
Definition 10, Definition 11, and Definition 12 express information that change over the time horizon of the 
allocation problem. In our settings, static information such as the relation between input and rules or rules 
and output are present as well. We collect this information in the following definitions. 
 

Definition 13 (Input Matrix).  Let 𝐹𝑢 ∈ 𝔹|𝑋|×|𝑈| be the Boolean input matrix representing the relationship 
between inputs and rules. Specifically, an entry 𝐹𝑖𝑗

𝑢 is equal to 1 if the 𝑗-th input event is required for the 

activation of the 𝑖-th rule. 
 

Definition 14 (End-Operation Matrix).  Let 𝐹𝑜 ∈ 𝔹|𝑋|×|𝑂| be the Boolean end-operation matrix representing 
the relationship between completions of operations and rules. Specifically, an entry 𝐹𝑖𝑗

𝑜  is equal to 1 if the 𝑖-

th rule requires the completion of the 𝑗-th operation to be enabled. 
 

Definition 15 (Start-Operation Matrix).  Let 𝐻𝑜 ∈ 𝔹|𝑂|×|𝑋| be the Boolean start-operation matrix representing 
the relationship between rules and completions of operations. Specifically, an entry 𝐻𝑖𝑗

𝑜  is equal to 1 if the 𝑖-

th operation starts as consequence of the activation of the 𝑗-th rule. 
 

Definition 16 (Output Matrix).  Let 𝐻𝑦 ∈ 𝔹|𝑌|×|𝑋| be the Boolean output matrix representing the relationship 

between rules and outputs. Specifically, an entry 𝐻𝑖𝑗
𝑦  is equal to 1 if the 𝑖-th output event is the consequence 

of the activation of the 𝑗-th rule. 
 
Definition 13 and Definition 14 describe the preconditions to certain events and are hence known as 
preconditions matrices. On the contrary, Definition 15 and Definition 16 describe the postconditions to 
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certain events and are hence known as postconditions matrices. The information on preconditions and 
postconditions can be encoded by two compacts matrices defined hereinafter. 
 

The preconditions matrix 𝐹 ∈ 𝔹|𝑋|×(|𝑈|+|𝑂|+|𝑋|+|𝑌|) is defined as 
 

𝐹 = [𝐹𝑢 𝐹𝑜 𝐼|𝑋| 0|𝑋|×|𝑌|], 
 

and the postconditions matrix 𝐻 ∈ 𝔹(|𝑈|+|𝑂|+|𝑋|+|𝑌|)×|𝑋| is defined as 
 

𝐻 = [0|𝑋|×|𝑈| 𝐻𝑜𝑇 0|𝑋|×|𝑋| 𝐻𝑦𝑇]
𝑇
. 

 
These two matrices, as we will see later, will be used to model the evolution of the discrete event system. 
 

 
Figure 3 – Scenario of possible precedence constraints between a set of three operations 𝑂 = {𝑜1, 𝑜2, 𝑜3}. Set of inputs, outputs, and 
rules are also shown. 

 
In order to explain the structure of the preconditions matrix 𝐹 and the postconditions matrix 𝐻 consider the 
scenario depicted in Figure 3 where a set of three operations 𝑂 = {𝑜1, 𝑜2, 𝑜3} with precedence constraints is 
given. Specifically, operation 𝑜1 can start only after input 𝑢2 has been enabled, whereas operation 𝑜2 can be 
started only after the activation of input 𝑢1; operation 𝑜3 instead has to wait for the completion of 
operation 𝑜2 to be able to start. The output events 𝑦1 and 𝑦2 can be activated only after the completion of 
operations 𝑜2 and 𝑜3, respectively. The activation or the start of an input/output event and operation is 
enabled through the set of rules 𝑋 = {𝑥1, … , 𝑥5} which are represented by the arrows. In this case matrix 𝐹 

is composed by 𝐹𝑢 ∈ 𝔹5×2 and 𝐹𝑜 ∈ 𝔹5×3 defined as 
 

 
 
Hence the overall structure of the preconditions matrix 𝐹 is 
 

𝐹 =

[
 
 
 
 
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0]

 
 
 
 

 . 

 
Similarly, the postconditions matrix 𝐻 is composed of 𝐻𝑜 ∈ 𝔹3×5 and 𝐻𝑦 ∈ 𝔹2×5 defined as  
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The structure of the postconditions matrix 𝐻 is then 
 

H =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0]

 
 
 
 
 
 
 
 
 
 
 

 . 

 
The input, output, and rule vectors in this case are 𝐮 ∈ 𝔹2, 𝐲 ∈ 𝔹2, and 𝐱 ∈ 𝔹5. 
 

4.2 Marking and Discrete Event System Evolution 
 
As described earlier, the preconditions and postconditions matrices describe how the discrete event system 
evolves, i.e., they are in charge of moving the tokens of the Petri Net in the different states of the system. 
Before detailing this process, let us introduce the marking vector 𝐦 which will collect the tokens of the 
system. 
 

Definition 17 (Marking Vector).  Let 𝐦(𝜏) ∈ ℕ0
|𝑈|+|𝑂|+|𝑋|+|𝑌| be the marking vector collecting the tokens of 

the system at time 𝜏 defined as 
 

𝐦(𝜏) = [𝐮(𝜏)𝑇 𝐭(𝜏)𝑇 𝐜(𝜏)𝑇 𝐲(𝜏)𝑇]𝑇 , 
 

where 𝐭(𝜏) ∈ ℕ0
|𝑂| and 𝐜(𝜏) ∈ 𝔹|𝑋| are task and control vector at time τ, respectively. The task vector 𝐭(τ) 

collects the tokens associated to the operations, i.e., the 𝑖-th entry of 𝐭(τ) is equal to ℎ if the 𝑖-th operation 
has ℎ tokens, whereas the control vector 𝐜(τ) is in charge of allowing the firing of the rules 𝐱(𝜏), i.e., the 𝑖-
th entry of 𝐜(τ) is equal to 1i if the 𝑖-th rule can be fired, 0 otherwise. 
 
Definition 17 however does not consider the processing times that each operation may have. To account for 
this aspect the marking vector 𝐦(𝜏) is split in two components: •𝐦(𝜏) and 𝐦•(𝜏) such that 𝐦(𝜏) = •𝐦(𝜏) +
𝐦•(𝜏). The vector •𝐦(𝜏) collects the tokens that can be consumed as soon as the transitions fire; if the 
transitions have been fired and the time associated with the places whose transitions have been fired has 
lapsed, the tokens of •𝐦(𝜏) are moved in the vector 𝐦•(𝜏) and the output transitions can be fired. 

Specifically, the preconditions marking vector •𝐦 ∈ ℕ0
|𝑈|+|𝑂|+|𝑋|+|𝑌| is defined as 
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 •𝐦(𝜏) = [𝐮(𝜏)𝑇 •𝐭(𝜏)𝑇 𝐜(𝜏)𝑇 𝟎|𝑌|
𝑇 ]

𝑇
, (6) 

 

whereas the postconditions marking vector 𝐦• ∈ ℕ0
|𝑈|+|𝑂|+|𝑋|+|𝑌| as 

 
 𝐦•(𝜏) = [𝟎|𝑈|

𝑇 𝐭•(𝜏)𝑇 𝟎|𝑂|
𝑇 𝐲(𝜏)𝑇]

𝑇
, (7) 

 

in which •𝐭(𝜏) ∈ ℕ0
|𝑂| and 𝐭•(𝜏) ∈ ℕ0

|𝑂| collect the tokens of the operations that can potentially be started 
and the operations that have been completed at time 𝜏. 
 
We can now provide the logical equations describing the evolution of the discrete event system [2]. The firing 
rule vector 𝐱(𝜏) at time 𝜏 can be computed as  
 

 𝐱(𝜏) = ¬ (𝐹 ⊙ ¬ 𝜑(•𝐦(𝜏))). (8) 

 
The marking vectors •𝐦(𝜏) and 𝐦•(𝜏) can be updated as 
 

 •𝐦(𝜏 + 1) = •𝐦(𝜏) − 𝐹𝑇  𝐱(𝜏),

𝐦•(𝜏 + 1) = 𝐦•(𝜏) + H 𝐱(𝜏).
 (9) 

 
In the next section we are going to describe how the matroid framework and the Petri Net can be integrated 
to solve the multi-agent task allocation problem with precedence constraints, whose definition is given 
hereinafter. 
 
Problem 4 (Multi-Agent Task Allocation and Scheduling).  Consider the same setting as Problem 3. In addition, 
consider possible precedence constraints between pairs of operations encoded by the discrete event system 
introduced in eq. (8) and eq. (9). Furthermore, consider that each operation 𝑜 ∈ 𝑂 requires a processing time 
𝑝𝑎𝑑𝑜 that depends on the agent 𝑎 and device 𝑑 executing it. Finally, we assume that the given sets 𝐴, 𝐷, 𝑂, 
and ℐ𝑎𝑖

 with 𝑎𝑖 ∈ 𝐴 admit a feasible solution to the problem. 
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5 Integrated Framework 
 
In order to solve Problem 4 we propose a framework that tries to assign and schedule at each time 𝜏 the 
operations that are both conflict-free and independent in the agents’ independence sets. This procedure is 
modelled by the discrete event system introduced in eq. (8) and eq. (9) which triggers the allocation of 
feasible operations with the greedy algorithm introduced in Algorithm 1 - Greedy algorithm's pseudocode 
for Problem 1. each time an input event is enabled or an operation is completed, until all operations have 
been allocated and scheduled. The steps of the proposed framework are summarized in Algorithm 2. 
 
 

 
Algorithm 2 – Framework algorithm’s pseudocode. 

 
The framework initializes at line 1 the preconditions and postconditions marking vector at time 0 and 

vector 𝐲 ∈ 𝔹|𝑂| as vectors of zeros, as well as setting time 𝜏 = 1. The vector 𝐲 keeps track of the operations 
that have been completed and is used to conclude the execution of the algorithm; indeed, as shown at line 2 
the algorithm continues to iterate until all entries of 𝐲 are equal to 1. Vectors •𝐭(𝜏), 𝐭•(𝜏), and 𝐲(𝜏) are 
updated according to the composition of the preconditions and postconditions marking vector defined in eq. 
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(6) and eq. (7) at lines 4–5. If any operation is completed, lines 6–8 update the vector •𝐭(𝜏) adding the tokens 
necessary for the activation of the operations that can be executed after the completion of the first one. At 
lines 9–13 the allocation of the available operations is made if the vectors 𝐮(𝜏) or •𝐭(𝜏) have been enabled. 

Specifically, Algorithm 1 is run using a restricted ground set 𝐸(𝜏) which contains only the triplets of the 

operations that have no precedence constraints at time 𝜏, i.e., 𝐸(𝜏) ⊆ 𝐸 is defined as 
 

 𝐸(𝜏) = {(𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘): 𝑎𝑖 ∈ A, 𝑑𝑗 ∈ D, 𝑜𝑘 ∈ 𝑂, with 𝑜𝑘 allowed to start at time 𝜏. }. (10) 

 

The resulting schedule 𝒮 is then used to compute an allocation vector 𝐳(𝜏) ∈ ℕ0
|𝑂| in which each 𝑘-th entry 

is defined as 
 

 𝐳𝑘(𝜏) = {
𝑎𝑖 if operation 𝑘 has been assigned to agent 𝑎𝑖 ,
0 otherwise,

 (11) 

 
with 𝑘 ∈ {1, … , |𝑂|}. Finally, the control vector 𝐜(𝜏) can be computed using the following law 
 

 𝐜(𝜏) = (𝐻𝑜𝑇 ⊙ 𝜑(𝐳(𝜏))) ∨ (𝐹𝑜  •𝐭(𝜏) ∧ 𝐻𝑦𝑇  𝟏|𝑌|). (12) 

 
If no update of the vectors 𝐮(𝜏) or •𝐭(𝜏) occurs, then the control vector is set to a vector of zeros at line 14. 
The preconditions marking vector •𝐦(𝜏) is then updated with the computed 𝐜(𝜏) and the possibly updated 
vectors 𝐮(𝜏), •𝐭(𝜏) as defined in eq. (6) (line 16). At this point the discrete event system can be updated first 
computing the rule vector 𝐱(𝜏) as in eq. (8) and then updating the preconditions and postconditions marking 
vector as described in eq. (9) (lines 17–18). Finally, the logical “or” operation is computed on the vector 𝐲 to 
keep track of completion events occured at time 𝜏 (line 19), and the time 𝜏 is incremented (line 20). 
 
We also want to recall that the considered problem is NP-Hard (supposing that 𝑃 ≠ 𝑁𝑃) and can hence not 

be solved optimally in polynomial time. Our framework is able to achieve a 
1

2
−approximate solution when 

no precedence constraints are involved, as detailed in Corollary 1. When precedence constraints are 
considered, our framework is only able to guarantee that the allocations made at each time step 𝜏 are such 

that each solution (allocation) guarantees a 
1

2
−approximation ratio. However, no guarantees on the 

optimality of the overall solution can be given at the current time. Future works will investigate provable 
approximation algorithm for guaranteeing a specific optimality ratio for the provided schedule. 
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6 Numerical Validation 
 
In this section we numerically validate the multi-agent task allocation and scheduling framework for 
agronomic operations with three sets of examples: in the first one we show how Algorithm 1 can be applied 
to obtain an allocation of tasks for the team of three agents introduced in Section 3; in the second one we 
provide the results of an abstract scenario which involves 5 agents, 10 operations, and 6 devices; finally, in 
the third one we provide the results of the allocation and scheduling of a representative scenario of our 
farming activities. 
 

6.1 Task Allocation 
 
In this section we present the results of the task allocation framework using Algorithm 1, i.e., the problem of 
allocating a team of agents when no precedence constraints among the farming operations are present. 

Specifically, we consider the scenarios introduced in Figure 1 and Figure 2 where each triplet (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) ∈ 𝐸 

has been associated to a positive integer processing time 𝑝𝑖𝑗𝑘 ∈ ℕ. The utility function 𝑢 introduced in eq. 

(5) has been defined as to minimize the processing time as 1/𝑝𝑖𝑗𝑘 for all triplets in the ground set. 

 
The processing time 𝑝𝑖𝑗𝑘 for the three agents are reported in the following three matrices where the rows 

are associated to the devices and the columns to the operations: 
 

𝑎1 : 

[
 
 
 
 
2 1 3
4 5 5
5 10 4
5 4 2
5 3 8]

 
 
 
 

, 𝑎2 : 

[
 
 
 
 
6 6 7
2 9 10
6 3 10
2 8 5
2 1 6 ]

 
 
 
 

, 𝑎3 : 

[
 
 
 
 
7 3 1
1 7 6
5 7 2
2 3 9
3 4 9]

 
 
 
 

 . 

 
Notice that even if the processing time are given for all the elements in the ground set 𝐸, not every pair of 
device operation can be assigned to a certain agent. Indeed, the feasibility of the triplet is checked by the 
independence oracle Ψ during the construction of the greedy solution in Algorithm 1.  
 
The results of the greedy algorithm are shown in Table 1 where the first three columns depict the selected 

triplets (𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) and the second three columns specify the start, end, and processing time, respectively.  

 

Agent Device Operation Start Time End Time Processing Time 

3 2 1 0 1 1 

2 4 2 0 8 8 

1 3 3 0 4 4 

Table 1 – Results of task allocation for the scenario introduced in in Figure 1 and Figure 2. 

 
Figure 4 depicts the Gantt diagram for the same scenario where the horizontal axis depicts the processing 
times and the vertical one contains the information related to each single operation. Each bar corresponds 
to an allocation where each color represents a different robot, i.e., blue for robot 𝑎1, red for robot 𝑎2, and 
yellow for robot 𝑎3. 
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Figure 4 – Gantt diagram for the scenario introduced in Figure 1 and Figure 2. 

 

6.2 Abstract Task Allocation and Scheduling  
 
In this section we illustrate the results of an abstract task allocation and scheduling consisting of a team of 5 
agents equipped with devices from a set of 6 elements. There are 10 agronomical operations that need to 
be allocated and scheduled according to the following precedence constraints: 
 

• Operation 𝑜4 must start after the competition of operation 𝑜6; 

• Operation 𝑜5 must start after the competition of operation 𝑜4; 

• Operation 𝑜8 must start after the competition of operation 𝑜6; 

• Operation 𝑜9 must start after the competition of operation 𝑜8; 

• Operation 𝑜10 must start after the competition of operation 𝑜7. 
 
Figure 5 depicts the operations, the inputs, the outputs, and the rules of the considered scenario as described 
in the scheduling framework introduced in Section 4. 
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Figure 5 – Graphical description of the precedence constraints on the set of operations considered in the abstract scenario. 

Each triplet (𝑟𝑖 , 𝑠𝑗 , 𝑜𝑘) ∈ 𝐸 has been associated to a processing time 𝑝𝑖𝑗𝑘 ∈ ℕ and a utility 𝑢 function which 

is inverse to the processing time 𝑝𝑖𝑗𝑘 as 𝑢(𝑟𝑖 , 𝑠𝑗 , 𝑜𝑘) =
1

𝑝𝑖𝑗𝑘
. The inputs are all enabled at the starting time 

𝜏 = 0, i.e., 𝒖𝑖(𝜏) = 1 for all 𝑖 = 1,… , 5.  
  
Each agent is associated to an independence set ℐ𝑎𝑖

 which for the sake of simplicity is a uniform matroid, i.e., 

each agent can be assigned to a maximum of 𝑘𝑖 operations at the same time.  
 
Algorithm 2 is used to determine the allocation and scheduling of the 10 operations. The results are shown 
in Table 2. As shown, the precedence constrains are verified since operation 𝑜4 and 𝑜8 starts at time 𝜏 = 8 
after the completion of operation 𝑜6 at the same time. Similarly, operations 𝑜5, 𝑜9, and 𝑜10 all starts after 
the completion of their respective required operation.  
 

Agent Device Operation Start Time End Time Processing Time 

3 2 2 0 6 6 

5 4 3 0 9 9 

2 3 7 0 9 9 

1 1 6 0 8 8 

4 4 1 0 8 8 

3 1 8 8 11 3 

5 4 4 8 11 3 

2 3 10 9 10 1 

1 1 9 11 20 9 

4 2 5 11 19 8 

Table 2 – Results for the abstract task allocation and scheduling. 
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Figure 6 depicts the Gantt diagram of the results of the considered scenario in which each color is associated 
to a different agent. Each row depicts the scheduling of the related operation over the time window 𝜏 ∈
[0,20].  Furthermore, the presence of matroidal constrains can also be seen by the allocations of agent 𝑎5 
which can perform operation 𝑜3 and 𝑜4 at the same time. 
 
 

 
Figure 6 – Gantt diagram for the abstract task allocation and scheduling consisting of 5 agents and 10 agronomical operations. 

6.3 Precision Farming Activities Allocation and Scheduling 
 
Motivated by the agronomical activities involved in the project, in this section we illustrate the proposed 
framework to our agronomical context which involves a total of 4 agents: 2 ground robots, 1 aerial robot, 
and 1 agronomical expert.  
 
The agronomical operations that we intend to allocate and then schedule, are the following: 
 

• 𝑜1: Tree Geometry Reconstruction; 

• 𝑜2: Pest and Disease Management; 

• 𝑜3: Water Stress Assessment; 

• 𝑜4: Suckers’ Detection;  

• 𝑜5: Suckers’ Management; 

• 𝑜6: Bugs’ Detection; 

• 𝑜7: Bugs’ Management; 

• 𝑜8: Pruning Management. 
 
The set of agents at our disposal are the following: 
 

• 𝑎1: UGV 1; 

• 𝑎2: UGV 2; 

• 𝑎3: UAV; 

• 𝑎4: Agronomical expert. 
 
The set of devices that can be equipped by the agents are the following: 
 

• 𝑑1: RGB camera; 
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• 𝑑2: RGBD camera; 

• 𝑑3: Multispectral camera; 

• 𝑑4: Thermal camera; 

• 𝑑5: FARO lidar; 

• 𝑑6: Herbicide sprayer; 

• 𝑑7: Bugs’ traps; 

• 𝑑8: Scissors. 
 

The following precedence constraints are considered in our agronomical scenario: 

• Suckers’ Management (𝑜5)  can be performed only after Suckers’ Detection (𝑜4); 

• Pruning Management (𝑜8) can be performed only after Tree Geometry Reconstruction (𝑜1); 

• Bugs’ Management (𝑜7) can be performed only after Bugs’ Detection (𝑜6). 
 
The list of operations and precedence constraints are shown in Figure 7. The input events are all enabled at 
the starting time 𝜏 = 0, i.e., 𝒖𝑖(𝜏) = 1 for all 𝑖 = 1, … , 5.  
 
 

 
Figure 7 – Graphical representation of the precedence constraints on the set of operations considered scenario. 

 
The independence sets for the agents are defined as follows. 
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The independence set for UGV 1 is: 
 

ℐ𝑎1
= { {∅}, {(𝑎1, 𝑑1, 𝑜4)}, {(𝑎1, 𝑑2, 𝑜4)}, {(𝑎1, 𝑑1, 𝑜6)}, {(𝑎1, 𝑑2, 𝑜6)},

{(𝑎1, 𝑑1, 𝑜4), (𝑎1, 𝑑1, 𝑜6)}, {(𝑎1, 𝑑2, 𝑜4), (𝑎1, 𝑑2, 𝑜6)},

{(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑3, 𝑜1), (𝑎1, 𝑑5, 𝑜1)}, {(𝑎1, 𝑑2, 𝑜1), (𝑎1, 𝑑3, 𝑜1), (𝑎1, 𝑑5, 𝑜1)},

{(𝑎1, 𝑑1, 𝑜1), (𝑎1, 𝑑2, 𝑜1), (𝑎1, 𝑑3, 𝑜1), (𝑎1, 𝑑5, 𝑜1)}     }.

 

 
The independence set for UGV 2 is: 
 

ℐ𝑎2
= { {∅}, {(𝑎2, 𝑑2, 𝑜4)}, {(𝑎2, 𝑑2, 𝑜6)}, {(𝑎2, 𝑑6, 𝑜5)},

{(𝑎2, 𝑑2, 𝑜4), (𝑎2, 𝑑6, 𝑜5)}, {(𝑎2, 𝑑2, 𝑜6), (𝑎2, 𝑑6, 𝑜5)}    }.
 

 
The independence set for UAV is: 
 

ℐ𝑎3
= {  {∅}, {(𝑎3, 𝑑1, 𝑜2)}, {(𝑎3, 𝑑3, 𝑜2)}, {(𝑎3, 𝑑1, 𝑜2), (𝑎3, 𝑑3, 𝑜2)},

{(𝑎3, 𝑑3, 𝑜3), (𝑎3, 𝑑4, 𝑜3)}, {(𝑎3, 𝑑1, 𝑜2), (𝑎3, 𝑑3, 𝑜2), (𝑎3, 𝑑3, 𝑜3), (𝑎3, 𝑑4, 𝑜3)}     }.
 

 
The independence set for the agronomical expert is: 
 

ℐ𝑎4
= { {∅}, {(𝑎4, 𝑑7, 𝑜7)}, {(𝑎4, 𝑑8, 𝑜8)}      } . 

 

As done in the previous examples, each triplet is associated to a processing time 𝑝𝑖𝑗𝑘 which defines also its 

utility 𝑢(𝑎𝑖 , 𝑑𝑗 , 𝑜𝑘) in the solution. The matrices defining the processing times for each agent are the 

following: 

𝑎1:

[
 
 
 
 
 
 
 
7 9 4 7 7 5 5 1
7 2 6 5 4 1 6 6
3 5 5 6 8 8 2 8
5 7 9 7 5 4 8 1
2 1 9 10 6 5 4 7
1 4 9 9 6 10 2 3
6 7 5 2 2 9 8 5
5 3 2 10 4 3 6 1]

 
 
 
 
 
 
 

 , 

 

𝑎2:

[
 
 
 
 
 
 
 
6 10 9 3 5 5 4 4
10 8 5 8 7 6 9 8
4 9 1 2 10 6 7 9
1 2 3 1 1 8 5 4
9 9 3 7 6 10 6 4
10 5 7 4 5 4 10 7
5 3 10 5 7 8 7 3
10 6 6 1 9 7 7 1]

 
 
 
 
 
 
 

 , 

 

𝑎3:

[
 
 
 
 
 
 
 
3 10 1 6 5 2 3 2
7 7 10 4 3 2 9 5
6 9 5 8 9 8 8 8
6 8 2 2 4 1 2 6
7 10 2 4 10 5 3 2
6 4 6 2 3 1 7 4
10 4 7 7 7 10 8 8
9 1 9 6 8 9 4 5]

 
 
 
 
 
 
 

 , 



Precision Farming of Hazelnut Orchards (PANTHEON) 
___________________________________________________________________________________________________________ 

PANTHEON Document D3.5_Farm_Activities_Planner_Rel.01_20210531 
  

SCADA for Agriculture

PANTHEON

29 

 

𝑎4:

[
 
 
 
 
 
 
 
8 3 10 4 2 3 7 10
2 1 5 5 9 2 8 8
7 7 4 10 9 9 9 9
8 10 5 8 7 8 7 5
9 6 3 5 9 4 8 4
3 4 3 10 1 6 2 7
10 4 9 9 7 3 8 6
6 5 9 5 9 4 10 1 ]

 
 
 
 
 
 
 

 , 

 

where each row is associated to a device and each column is associated to an operation. We recall that the 

processing times are given for all triplets in the ground set but the solution is constructed by first evaluating 

their feasibility. 

The problem is solved applying Algorithm 2. The results of the allocation and scheduling are summarized in 
Table 3. For example, UGV 1 (agent 𝑎1) is scheduled to perform Bugs’ Detection (operation 𝑜6) using RGBD 
camera (device 𝑑2) at time 𝜏 = 0 and Tree Geometry Reconstruction (operation 𝑜1) using FARO lidar sensor 
(device 𝑑5) at time 𝜏 = 1, whereas UGV 2 (agent 𝑎2) is scheduled to perform Suckers’ Detection (operation 
𝑜4) using RBGD camera (device 𝑑2) at time 𝜏 = 0 and Suckers’ Management (operation 𝑜5) using the 
herbicide sprayer (device 𝑑6) at time 𝜏 = 8. 
 
 
 

Agent Device Operation Start Time End Time Processing Time 

1 2 6 0 1 1 

3 4 3 0 2 2 

2 2 4 0 8 8 

1 5 1 1 3 2 

4 7 7 1 9 8 

3 3 2 2 11 9 

2 6 5 8 13 5 

4 8 8 9 10 1 

Table 3 – Results of the allocation and scheduling of the precision farming activities. 

 
Note that the devices are assumed unique for each agent, i.e., each robot or individual is equipped with its 
own copy. This implies that no device precedence constraints on the use of the same devices have to be 
considered in our formulation. 
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Figure 8 depicts the Gantt diagram of the results of the considered scenario in which each color is associated 
to a different agent. Each row depicts the scheduling of the related operation over the time window 𝜏 ∈
[0,14].  As shown, the precedence constraints between the pairs (𝑜4, 𝑜5), (𝑜6, 𝑜7), and (𝑜1, 𝑜8) are all satisfied. 
 
 
 

 
Figure 8 – Gantt diagram for the precision farming activities. 
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