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Executive Summary 

This document describes the Robotic Vehicles Field Validation of the project PANTHEON. 

In particular, this Deliverable presents the field validation of the unmanned vehicles navigation, monitoring 
and agronomic intervention capabilities within a real-world (1:1 scale) hazelnut orchard. In this regard, a 
detailed description of the theoretical achievements along with videos describing the experimental validation 
are provided.   

Note that, regarding the media content this Deliverable is to be considered a live-document and is subject to 
regular updated to be found on the portal of the project PANTHEON, i.e., http://www.project-pantheon.eu. 
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Abbreviations and Acronyms 

UGV Unmanned Ground Vehicle 
UAV Unmanned Aerial Vehicle  
SLAM Simultaneous Localization and Mapping  
KF Kalman Filter 
EKF Extended Kalman Filter 
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1 Unmanned Ground Vehicle  
One of the objectives of the PANTHEON project is to develop an Unmanned Ground Vehicle (UGV) capable 
of moving within an orchard, to collect data and perform typical farming operations (such as suckers’ 
treatment and branch marking for pruning) in a fully autonomous manner. Several modules are required to 
achieve this objective, ranging from the design and implementation of control, navigation, and planning 
algorithms and a simultaneous localization and mapping (SLAM) framework as well. In the following, we 
provide a comprehensive description of the main modules we developed together with their experimental 
validations we carried out within the PANTHEON hazelnut orchards. 

1.1 Preliminaries 
In this section, we provide a brief overview of the notations and the basic graph theory concepts that will be 
used in the sequel for deriving the SLAM, the global planning and the navigation architectures. In this work, 
we make use of a world frame ℱ𝒲, a robot frame ℱℬ  and a map frame ℱℳ .  Moreover, we assume the robot 
to be equipped with a LiDAR sensor, whose frame is defined as ℱ𝒮, and with a GPS sensor for which we 
assume the measurements to be already expressed in ℱℬ.  

We represent vectors as bold quantities having a superscript, representing the frame in which they are 
expressed, and a subscript, indicating the origin and the end of such a vector. For example, the quantity 𝑝%&'  
represents the position of the body frame ℬ with respect to the sensor frame 𝒮, expressed in the world frame 
𝒲. To simplify the notation, if a vector has no superscript, we assume it to be expressed in the first frame 
reported in the subscript (i.e., the frame where the vectors origin is). Similarly, we represent matrices as bold 
upper-case quantities where we encode the starting frame as subscript and the final frame as superscript. 
For example, the rotation matrix 𝑅'&  transforms a vector from the body frame ℱℬ  to the world frame ℱ𝒲. 
All the remaining matrices are expressed as capital quantities. 

To enable the SLAM to estimate the planting pattern of the target field, the field is modeled as a chessboard 
with rectangular chess. The chessboard model is expressed in the map frame ℱℳ  and define two main 
chessboard directions along with the trees are arranged. 

To achieve a scalable computational complexity in SLAM and to define a global path for the robotic platform, 
we resort to a topological map encoded by means of a graph. In this regard, let us define a directed graph 
𝒢 = {𝑉, 𝐸}, where 𝑉 = {𝑣(,  … ,  𝑣)}   is the set of nodes (i.e. trees, in our case) and 𝐸 = 12𝑣* , 𝑣+34  is the set 
of pairwise edges among nodes 𝑖 and 𝑗. In addition, with 𝑛 = |𝑉| and 𝑚 = |𝐸| we indicate the total number 
of vertexes and the total number of edges, respectively. Moreover, for any node set 𝑆	 ⊂ 𝑉, let 𝛿^ + (𝑆) 
denote the set of arcs in 𝑉 for which tails are in 𝑆 and for which heads are in 𝑉	 ∖ 𝑆, and let 𝛿,(𝑆) denote 
the set of arcs in 𝑉 for which the reverse holds. We denote with the symbol 𝑒- = 2𝑣* ,  𝑣+3  the 𝑘-th edge for 
a directed graph, that is from the vertex 𝑣*  to the vertex 𝑣+. For an arc 𝑒- = 2𝑣* ,  𝑣+3 ∈ 𝐸, the cost 𝑑.!  
represents the travelling distance cost from the vertex 𝑣* 	to the vertex 𝑣+. Let us define a path between trees 
𝑖 and 𝑗 as the set of edges through which a tree 𝑗 can be reached by a tree 𝑖. Let us define the length of a 
path between a pair of vertexes 𝑖 and 𝑗 as the number of edges required to build it. Let us denote with 
𝒩(𝑖)( = {𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐸} the 1-hop neighborhood of the tree 𝑖, i.e. the set of vertexes 𝑗 that can be reach 
from vertex 𝑖 through a path of length 1. In addition, let us denote with 𝒩(𝑖)- the 𝑘-hop neighborhood of 
tree 𝑖, for which we denote with I𝒩(𝑖)-I its cardinality. In other words, 𝒩(𝑖)- is the set of trees 𝑗 for which 
there exists a 𝑝-hop path from the tree 𝑖 to the tree 𝑗 with 𝑝	 ≤ 𝑘. Moreover, let us denote with         
𝒩(𝑖, 𝑗)- = {𝒩(𝑖)- ∪𝒩(𝑗)-} as the union between the 𝑘-hop neighborhood of trees 𝑖 and 𝑗. Finally, in this 
work, the 1-hop neighborhood is built according to the Manhattan distance metrics, i.e. by considering only 
the edges along the two principal Cartesian axes. 



    Precision Farming of Hazelnut Orchards (PANTHEON) 
___________________________________________________________________________________________________________ 

PANTHEON Document D.6.1_Title_Rel.01_20200430   

SCADA for Agriculture
PANTHEON

7 

 

1.2 Ackermann Steering Kinematics 
In this section, we briefly review the basic concept of the Ackermann Steering Geometry. For a full theoretical 
characterization, we refer the reader to the deliverable 3.1. An Ackermann front-wheel-steering vehicle can 
be conveniently expressed from a mathematical standpoint in terms of a Bicycle model. In this model, the 
control inputs are the linear velocity 𝑣 and the steering angle ϕ. Specifically, the following set of equations 
can be used to describe the kinematics of a Bicycle model 

 �̇�(𝑡) = 𝑣(𝑡) cos2θ(𝑡)3  

 �̇�(𝑡) = 𝑣(𝑡) sin2θ(𝑡)3 (1) 

 
θ̇(𝑡) =

𝑣(𝑡)
l
tan2ϕ(𝑡)3 

 

 

where 𝒒(𝑡) = [𝑥(𝑡),  𝑦(𝑡),  ϕ(𝑡)]/  denotes the state vector at time 𝑡 with 𝒑(𝑡) = [𝑥(𝑡),  𝑦(𝑡)]/  representing 
the position of the robot in the Cartesian plane at time 𝑡 w.r.t. the global reference frame ℱ𝒲 = 2𝑥0,  𝑦0,  θ03, 
and θ(𝑡) representing its orientation with respect to the 𝑥-axis of global reference frame ℱ𝒲  at time 𝑡, 
𝑢(𝑡) = [𝑣(𝑡),  ϕ(𝑡)]/  denotes the input vector at time 𝑡 with 𝑣(𝑡) and ϕ(𝑡) representing the linear velocity 
and the steering angle, respectively, at time (𝑡), and finally l denotes the wheelbase, i.e., the distance 
between the front and rear axles.  In the following we will refer to the Bicycle kinematics in a compact form 

 �̇�(𝑡) = 𝑓2𝒒(𝑡), 𝒖(𝑡)3 (2) 

with 𝑓(⋅,⋅) the system dynamics defined according to Equation (1). In the sequel, the time-dependence will 
be omitted if not strictly required for the sake of readability. In this work we assume that the vehicle 
reference frame ℱℬ = (𝑥,  𝑦,  θ) is going to be located at the center of the rear axle (see Figure 1 (left)). 

          

Figure 1 - Left: Equivalent Bicycle model for a front-wheel steering vehicle. Right: definition of polar coordinates for the bicycle 
model 
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1.3 Navigation Architecture 
The navigation architecture is composed of two major modules: a local planner and a low-level control law. 
The former generates, in real-time, optimal trajectories by formulating the planning problem as a real-time 
cost function minimization over a finite time horizon. The latter ensures the robot to closely track the planned 
trajectory. In the following, we provide a comprehensive description of both the above introduced modules. 
The proposed navigation architecture has been published in the Robotics and Automation Letters (RA-L) [1] 
and for presentation at the IEEE International Conference on Robotics and Automation (ICRA), annual flagship 
conferences of the Robotics & Automation Society (RAS).  

1.3.1 Local Planning 
The goal of the trajectory planner is to generate optimal trajectories over a time horizon 𝑇 from any given 
initial pose and velocity that fulfill the following requirements: 

I. the trajectory steers the robot to a given target pose; 
II. the trajectory satisfies the Ackermann kinematics constraints and is collision-free; 

III. the trajectory is generated in a receding horizon fashion and in real-time. 

We reiterate that the latter aspect is essential in the farming context since re-planning in real-time allows 
the robot to react in time to avoid dynamical obstacles and to handle perception uncertainties as well. The 
whole problem can be formulated as a cost-function minimization problem over a finite time horizon 𝑇. To 

this end, let 𝒐(𝑡) = d𝑜((2)
/ ,  … ,  𝑜𝔬(2)"f

/
 be the state vector of the surrounding obstacles where 𝑜*(2) =

d𝑥*(2),  𝑦*(2)f
/

 represents the state of the 𝑖-th obstacle considered at time 𝑡 described by its coordinates, and 
𝔬(𝑡) is the number of detected obstacles at time 𝑡. Note that, a time-varying index mapping 𝑖(𝑡) is used in 
the mathematical formulation to model the fact that the 𝑖-th obstacle considered for planning the trajectory 
at time 𝑡 depends on the actual robot position at that time 𝑡. 

In addition, let 𝒒(𝑡) and 𝒖(𝑡) be the state and the input vectors of a robot at time 𝑡, respectively, with 
dynamics defined according to Equation (1) and expressed in a compact form according to Equation (2). The 
following optimization problem formulation is considered for the navigation of an Ackermann steering 
vehicle in a high-precision farming environment filled with obstacles 

 
min
𝒒(2)

ℎ j𝒒2𝑡63k + l 𝑐)2𝒒(𝑡), 𝒖(𝑡)3 	+ 𝑐72𝒒(𝑡), 𝒐(𝑡)3
2#

2$
 𝑑𝑡 

 

 Subȷect	to						𝒒̇ (𝑡) = 𝑓2𝒒(𝑡), 𝒖(𝑡)3, (3) 

 																									𝑟2𝒒(𝑡8)3 = 0,  

 																									𝑙2𝒒(𝑡), 𝒊(𝑡)3 ≤ 0	 ∀ 𝑖 ∈ {1,  … ,  𝔬(𝑡)}  

where ℎ j𝒒2𝑡63k describes the cost in the final state, 𝑐)2𝒒(𝑡), 𝒖(𝑡)3 describes the navigation cost, 

𝑐72𝒒(𝑡), 𝒐(𝑡)3 encodes  the obstacle avoidance cost,  𝑟2𝒒(𝑡), 𝒐(𝑡)3 and 𝑙2𝒒(𝑡), 𝑖(𝑡)3 encode the set of 
equality and inequality constraints to satisfy along the trajectory, and 𝑇 = 𝑡6 − 𝑡8 represents the time 
horizon in which we want to find the solution. In particular, the cost function and the set of equality and 
inequality constraints are defined as 
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 ℎ j𝑞2𝑡63k = j𝑞9 − 𝑞2𝑡63k
/
 𝑄6  j𝑞9 − 𝑞2𝑡63k 

 

 

 
𝑐72𝑞(𝑡), 𝑜(𝑡)3 =|}2𝑝(𝑡) − 𝑜*(𝑡)3

/  𝑊*  2𝑝(𝑡) − 𝑜*(𝑡)3�
,(

𝔬(2)

*:(

 

 

 

 𝑐)2𝑞(𝑡), 𝑢(𝑡)3 = 𝑢(𝑡)/  𝑅 𝑢(𝑡) + 2𝑞(𝑡) − 𝑞63
/  𝑄 2𝑞(𝑡) − 𝑞63 

 

(4) 

 𝑙2𝑞(𝑡), 𝑖(𝑡)3 = 𝑑;*)/  𝑑;*) − 2𝑝(𝑡) − 𝑜*(𝑡)3
/  2𝑝(𝑡) − 𝑜*(𝑡)3 

 

 

 2𝑞(𝑡8)3 = 2𝑞* − 𝑞(𝑡8)3
/  2𝑞* − 𝑞(𝑡8)3 

 

 

with 𝑞9  representing the goal state, 𝑑;*) safety distance from an obstacle,  𝑄6 ,  𝑊* ,  𝑄,  𝑅 weighting matrices, 
𝑞*  and 𝑞6 are the initial pose and desired final pose, respectively. 

In addition, it should be noticed that in order to comply with the real-time requirements of the application 
and to increase the flexibility of the approach, obstacles should be dynamically added and removed according 
to a proper detection and selection approach, e.g., only detected obstacles within a certain radius from the 
current robot location are considered for the planning. An obstacle detection algorithm purposely designed 
for the precision farming setting considered within the project PANTHEON, has been developed inside the 
Simultaneous Localization and Mapping module. We refer the reader to Section 1.4 for a comprehensive 
description.  

1.3.2 Low-Level Control Law  
In this section, we focus on the pose regulation problem for the Bicycle kinematics model given in Equation 
(1), i.e.,  the problem of designing a control law which is capable of steering the vehicle from any initial 
configuration  𝑞* = [𝑥* ,  𝑦* ,  ϕ*]/  to any desired final configuration 𝑞9 = [𝑥9 ,  𝑦9 ,  ϕ9]/. To facilitate the 
analysis, it is convenient to formulate the regulation problem in polar coordinates 𝑞� = [ρ,  γ,  δ]/.  For a given 
pose 𝑞 = [𝑥,  𝑦,  ϕ]/  this coordinate transformation is defined as  

 ρ = �(𝑥9 − 𝑥)< + (𝑦9 − 𝑦)< 
 

 

 γ = 𝑎𝑡𝑎𝑛22(𝑦9 − 𝑦), (𝑥9 − 𝑥)3 − θ + 	π 
 

(5) 

 δ = γ − (θ9 − θ) 
 

 

where ρ is the distance between the point (𝑥,  𝑦) of the Ackermann reference frame ℱℬ   and the origin of 
the Cartesian plane, γ the angle between the Cartesian error vector 𝑒= = 𝑝9 − 𝑝 and the sagittal axis of the 
vehicle, and  δ the angle between the same vector and the 𝑥-axis.  In these polar coordinates 𝑞� = [ρ,  γ,  δ]/, 
the kinematic model of the Ackermann steering is 

 ρ̇ = −𝑣 cos(γ) 
 

 

 
γ̇ =

sin(𝛾)
𝜌

	𝑣 −
𝑣
l
tan(ϕ) 

 

(6) 

 
δ̇ =

sin(𝛾)
𝜌

𝑣 
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note that the input vector field associated with 𝑣 = 0 is singular for ρ = 0. In the sequel, with no lack of 
generality we assume that the desired configuration is the origin, that is 𝑞9 = [0,  0,  0]/. For a full theoretical 
characterization of this non-smooth control law with its convergence properties the reader is referred to the 
deliverable 3.1. 

1.3.3 Numerical Validation 
In this section, we numerically demonstrate the capabilities of the proposed navigation architecture in a 
simulated hazelnut farming scenario. The experiments have been carried out through GAZEBO, a robotic 
simulation toolbox. The non-linear planning problem is set up with the ACADO toolbox and solved by the 
qpOASES solver [2]. By using the ACADO code generation tool, the problem is exported in a highly efficient 
c-code that we integrated within a ROS (Robot Operating System) node. We set the discretization step to be 
𝑑𝑡	 = 	0.5	𝑠 with a time horizon 𝑇	 = 	15	𝑠. The planned trajectory, which is described by a discrete sequence 
of poses, is then fed into the control law node as a sequence of waypoints, while the output Ackermann 
control inputs are mapped to the wheel motors by a simulated low-level controller running on-board. 

The experiment consists of planning trajectories from a given initial pose 𝑞*  to a sequence of desired poses 
𝔮𝔡 = 2𝑞9% , … , 𝑞9&3. For each pair of poses, the local planner will compute an obstacle-free trajectory 
described by a sequence of successive waypoints. To ensure smooth navigation with no stop-and-go 
behavior, a new waypoint is fed into the control law when the distance from the current waypoint has 
become smaller than a given threshold (set to 0.2 meters in our simulations). For the numerical validation, 
the control gains are tuned as (𝑘(, 𝑘<, 𝑘?) = (1,6,3). Indeed, this choice has numerically proven the robot to 
satisfactory follow the obstacle-free trajectory.  It should be noticed that for the numerical validation, a 
custom-built GAZEBO model of the SHERPA robotic platform has been developed. Briefly, this model is 
equipped with the same sensor setup as the real platform and moves according to the Ackermann steering 
kinematics. An example of a planned trajectory in the presence of a dynamic obstacle is depicted in Figure 2 
(left). Table I reports trajectory statistics from exhaustive simulations carried out with different setups. 
Results are sorted by increasing trajectory planning difficulties, either in terms of path length or presence of 
dynamic obstacles. The success rate is almost 100	%, while it slightly decreases when adding ``last-meter'' 
dynamic obstacles along the planned route, which may leave no space to corrective maneuver.  Nevertheless, 
the final position and angle errors remain almost unchanged, proving the effectiveness of the control law. 

1.3.4 Experimental Setup 
Real experiments have been carried out within one of the real-word hazelnut orchards of the PANTHEON 
project, within the ̀ `Azienda Agricola Vignola'', a farm located in the municipality of Caprarola, in the province 
of Viterbo, Italy. In particular, the experiments have been carried out in a young orchard (cultivar Nocchione 
treated as multi stemmed bushes) with a 4.5	𝑚 𝑥	3.0	𝑚 layout. Figure 2 (right) shows the ground vehicle 
prototype, namely SHERPA HL robotic platform R-A, which has been used for the experimental validation. 
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Figure 2 - Left: examples of a planned trajectory in a simulated scenario filled with static obstacles (green) and a dynamic obstacle 
(red). The green obstacles are arranged to resemble the planting layout of hazelnut trees as in the real field. Right: the SHERPA HL R-

A robotic platform 

Dynamic 
Obstacle 

Trajectory 
Length [m] 

Failure 
Rate [%] 

V[m/s] ϕ [rad] Min. Obst. 
Distance [m] 

Position 
Error [m] 

Angle 
Error [rad] 

 5 .02 .34 .75 1.34 .11 .08 
 7 .03 .33 .81 1.41 .09 .05 
 9 .03 .36 .78 1.36 .07 .07 

✔"# 9 4.06 .4 .98 1.19 .13 .12 
✔"# 12 4.75 .43 1.04 1.25 .11 .09 
✔"# 13 3.97 .41 1.05 1.23 .12 .11 

Table I - Simulations: trajectory statistical analysis 

The SHERPA HL R-A platform is mechanically designed to operate according to the Ackermann Steering 
kinematics. The platform is equipped with a Trimble MB-Two GNSS Receiver with GPS-RTK capabilities, a SBG 
Ellipse2-E IMU with an integrated compass, two Sick S300 Safety Laser Scanners, and a Velodyne VLP-16 Puck 
LITE 3D LIDAR. The platform also mounts an Intel NUC NF697 with an Intel Core i7-8705G Processor where 
the low-level software and the proposed control law run. The planner runs on an independent laptop with 
an Intel i7-8750H processor and the optimal trajectories are sent to the robot through a Wi-Fi connection. 
The non-linear planner and the control law are set up as described in the previous section. 

1.3.5 Pose Regulation Experimental Validation 
In this section, we experimentally demonstrate the effectiveness of the proposed control law in a real-world 
high-precision farming scenario, i.e., the hazelnut orchard described in the previous section. In all the 
regulation experiments the control gains and the desired state are tuned as (𝑘(, 𝑘<, 𝑘?) = (0.3,1.5,3) 
and  𝑞9 = 2𝑞@,9 , 𝑞B,9 , 𝑞C,93, respectively. The pose regulation task is performed with the real robotic platform 
and for 8 different starting poses 𝑞*  derived by sampling a set of positions over a circle with a radius of 6 
meters. The trajectories performed by the robot are reported in Figure 3, where it can be noticed that the 
robot successfully reaches the desired pose from all the initial conditions and shows a symmetrical behavior. 
Note that, to ease the visualization of this experimental validation the origin of the reference frame is 
relocated at the desired position 𝑝*  of the robot. 
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Figure 3 - Trajectories performed by the robot to reach the desired state in the field 16 of the hazelnut orchard. In red, the 
orientation of the vehicle sampled proportionally to the vehicle velocity. 

1.3.6 Navigation Experimental Validation 
In this section, we experimentally demonstrate the capabilities of the proposed navigation architecture in a 
real-world high-precision farming scenario, i.e., the hazelnut orchard described in Section 1.3.4. We demand 
the robot to move from an initial pose 𝑞*  to the desired pose 𝑞9  on a different orchard row. Thus, forcing the 
robot to plan a safe trajectory among trees. 

Three examples of trajectories performed by the real robotic platform are illustrated in Figure (4), where in 
the first case the robot moves forward while in the second and third cases the robot moves backward. It can 
be noticed that in all three cases, the robot successfully reaches the desired goal by passing in the 
intermediate point between two adjacent trees when switching from one row to another. In the third case, 
we spawn a virtual obstacle on the planned route. The robot is then forced to re-plan a different trajectory 
(depicted in red) to reach the desired goal. As reported in Table II, the robot always manages to reach the 
goal with a small error. The only exception is the third trajectory where, having delayed the switching 
maneuver between the rows, the robot does not find enough room to align its yaw with the desired one. 
Note that, to ease the visualization of these experimental results, in this case, the origin of the reference 
frame is relocated at the initial position 𝑝*  of the robot. In addition, it should be further noticed that the 
second and the third trajectories depicted in Figure 4 are also reported in the attached multimedia material 
together with a real footage of the robotic platform. 

 

Figure 4 - Trajectories performed by the robotic platform in a real hazelnut orchard (plants are represented by the green circles). From 
top to bottom, a front-wise maneuver, a rear-wise maneuver and a maneuver with a dynamic obstacle (red dot). The second and third 
trajectories are also reported in the attached multimedia material together with a real footage of the robotic platform. 
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Dynamic 
Obstacle 

Trajectory 
Length [m] 

V[m/s] 𝜙 [rad] Min. Obst. 
Distance [m] 

Position 
Error [m] 

Angle 
Error [rad] 

 9.5 .28 .3 1.01 .09 .12 
 9.5 .31 .31 1.05 .08 .09 

✔"# 9.5 .29 .41 1.14 .11 .19 
Table II - Experiments: trajectory statistical analysis. 

1.3.7 Computational Time 
In this section, we numerically validate the real-time planning capability of the proposed navigation 
architecture. To this end, it should be noticed that the computational cost is not constant. Indeed, it may 
vary according to the specific operating mode of the planner. For this reason, we distinguish among three 
different planning modes: 

• Initial mode (blue): which occurs when the vehicle starts planning a new trajectory. 
• Steady mode (green): which occurs when the vehicle is already moving toward the target pose. 
• Emergency mode (red): which occurs when a dynamic obstacle suddenly appears along the optimal 

trajectory. 

Figure 5 reports the average computational costs for all the planning phases. The average computational cost 
is constantly lower than 0.033	𝑠. As expected, the steady-planning phase turns out to be the cheapest one 
since the robot moves slowly and the trajectory to re-plan is close to the previous one. Conversely, the 
emergency re-planning phase is the most expensive and variable, as the trajectory to re-plan is usually far 
from the previous one since the dynamic obstacle might drastically change the optimal path. 

 

Figure 5 - Average computational time plot across the planning phases over a time horizon of 8 seconds: the (i) planning phase in 
blue, (ii) the steady-planning phase in green, and (iii) the emergency re-planning phase in red. The shaded areas represent the 

variance of the average computational time. 
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1.4 Simultaneous Localization and Mapping 
To localize and map the orchard environment we developed a compact and hierarchical Simultaneous 
Localization and Mapping system purposely designed for large-scale hazelnut orchard farming. The proposed 
system is composed of two layers: (i) an Extended Kalman Filter (EKF) that performs a SLAM and (ii) a Kalman 
Filter (KF) that estimates the planting pattern of the target field, i.e., the geometric arrangement of the plants 
in the orchard. The former formulates the mapping problem as the estimation of a set of landmarks, each 
one representing an individual tree in the field. To keep the map estimation scalable to the field size, the 
update process is carried out in a dynamically partitioned manner by considering in the update step only a 
small number of landmarks in the neighborhood of the moving platform. To achieve this, we consider a 
topological map encoded by an undirected graph, where the vertexes represent trees and the edges describe 
1-hop proximity Manhattan distances. Note that, an undirected graph is a particular instantiation of a 
directed graph 𝒢 = {𝑉, 𝐸} as defined in Section 1.1, where the existence of an edge 𝑒 = 2𝑣* ,  𝑣+3 ∈ 	𝐸 implies 
also the existence of an edge 𝑒D = 2𝑣+ ,  𝑣*3 ∈ 	𝐸. The geo-referentiation is finally achieved by a GPS-based 
correction in the EKF. The latter estimates at the same time the planting pattern of the considered field by 
exploiting the currently built map as a virtual measurement.  

The estimated pattern is then exploited in an outlier rejection process in the EKF, increasing the robustness 
of the proposed architecture and enabling to distinguish between trees and additional dynamical obstacles 
in the target field.  Real-world experiments within a hazelnut farm located in the municipality of Caprarola, 
in the province of Viterbo, Italy, are provided. To validate the effectiveness and the robustness of the 
proposed SLAM architecture under significantly different working conditions, experiments have been carried 
out across different seasons (see Figure 6). The proposed slam architecture has been submitted and is 
currently under review at the Journal of Field Robotics (JFR). 

 

Figure 6 - From left to right, images reporting the working scenario in summer and winter, respectively.  It can be noticed how the 
presence of the canopy on the trees significantly changes the working conditions.  Indeed, this may significantly affect the SLAM 
performance. 
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1.4.1 EKF SLAM in orchards 
The goal of a SLAM algorithm is to track, in real-time, the pose of a moving platform, i.e., localization, while 
estimating the position of the surrounding environment, i.e., mapping. A SLAM algorithm in an orchard-like 
scenario must also provide some additional properties: (i) a compact representation of the map, (ii) the 
scalability of the computational complexity with respect to the map extent, and (iii) the geo-referentiation 
of each object in the map. The first two properties enable the SLAM to properly work over extended areas 
and over long operational time since this is the usual working conditions of farming robots in orchard settings. 
Specifically, the first property enables the map to have a negligible memory footprint, while the second keeps 
the computational complexity constant with respect to the extent of the map. Finally, the last property is 
needed by the farmer to have a unique association between the map entries and the real trees of the field 
to monitor. In this section, we provide a comprehensive overview of the proposed SLAM architecture 
including also how the required properties are guaranteed. The SLAM problem is formulated in a probabilistic 
setting be resorting to a landmark-based EKF, considering each tree in the orchard as a landmark to which a 
unique ID is assigned. The first property is thus guaranteed by the proposed formulation which presents a 
compact form differently from standard keypoint-based representations of the environment that lead the 
map size to grow unbounded over time. Specifically, let the 2D position and the heading of the robot be      
𝒕 = [ 𝑥	𝑦 ]/  and θ, respectively, thus defining the robot pose as 𝒑 = [ 𝑥	𝑦	θ ]/ ∈ 𝑅?. Let the 𝑖2E landmark 2D 

position be 𝒍* = d 𝑙*@	𝑙*
B  f/ ∈ 𝑅𝟚. Thus, the full robot state results to be 𝛍	 = 	 [𝒑,𝒎]/ ∈ ℛ?G<H which 

considers both the robot pose and the full map 𝒎	 = 	 [	𝒍(, …		 , 𝒍H]/ ∈ ℛ<H, where 𝑁 represent the total 
number of mapped landmarks. Let the input vector be 𝒖 = [ 𝑣	ϕ ]/ ∈ ℛ<, composed of the linear velocity 
and the steering angle of the wheels, respectively. Also, let the measurement of the 𝑖2E landmark be            
𝒛*I = d𝑥*J , 𝑦*Jf, given by the 2D coordinates of the sensed plant, and the GPS measurement, consisting into the 
global robot position be 𝒛K = [𝑥K , 𝑦K]. Finally, for the above introduced observation models, we also define 
their relative observation matrices 𝑪I and 𝑪K , respectively, which model how the external measurements 
act on the EKF state. Notice that, in case of non-linear observations functions, the observation matrices are 
obtained through the calculation of the Jacobian with respect to the EKF state variables (see Algorithm I). 
The transition and observation functions are thus defined as follow 

 

�𝒑2G(𝒎 � = �𝑓(𝒑2 , 𝒖2)
𝒎

� =

⎣
⎢
⎢
⎢
⎡
𝒙2		+	𝑣2𝑐𝑜𝑠(𝜃2)Δ𝑡
𝒚2		+	𝑣2𝑠𝑖𝑛(𝜃2)Δ𝑡

𝜃2 +
𝑣2
𝑙 	𝑡𝑎𝑛

(𝜃2)Δ𝑡
𝒎 ⎦

⎥
⎥
⎥
⎤
 

 

 
(7) 

 ℎ*I(𝛍) = 𝑹'& (𝒍* − 𝒕), 𝑪I ∈ ℛ<×(?G<H)  
 

(8) 

 ℎK(𝛍) = 𝒕, 𝑪K ∈ ℛ<×(?G<H)  (9) 

Where Equation (7) represents the prediction step which only affects the pose of the vehicle since the map 
𝑚 is assumed to be static. The kinematic model has been approximated assuming the input vector 𝑢 constant 
for the time	Δ𝑡. Specifically, the prediction of the vehicle heading θ follows an Ackermann kinematic model, 
where the angular velocity is derived by ω = N

J
tanϕ where 𝑠 is the inter-axes length of the vehicle and ϕ its 

steering angle. The landmark observation model Equation (8) is formulated as a change of coordinates. 
Specifically, the 𝑖2E landmark is transformed from the world coordinate frame ℱ𝒲  to the robot coordinate 
frame ℱℬ  with the rotation matrix 𝑹'& . Differently, the GPS observation model Equation (9) does not require 
any coordinate transformation, since both quantities are expressed in the ℱ𝒲  frame. Moreover, the GPS-
based corrections enable the map to be geo-referenced, thus satisfying the third requirement stated at the 
start of this section. Prediction and Correction steps are carried out in a standard EKF manner (see [3]) for 
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which we provide a pseudo-code in Algorithm I for the convenience of the reader. Despite their simplicity, 
the observation models in Equations (8)-(9) might not properly scale with the field extent. Indeed, the size of 
the matrices 𝑪I and 𝑪K  increases with the dimension of the map, exceeding at a certain point the size for 
real-time performance. It is well known indeed how the correction step represents one of the main 
bottlenecks for any SLAM architecture in terms of computational complexity [4] [5]. We tackle this problem 
by a dynamical partitioned update step, where the neighbors landmark to update are selected trough a 𝑘-
hop Manhattan proximity distance. To do so, we define the partitioned state 𝛍𝒩(*,+)!  and the partitioned 
covariance matrix 𝑷𝒩(*,+)!, where we recall that with 𝒩(𝑖, 𝑗)- we denote the union of the 𝑘-hop 
neighborhoods of the trees 𝑖 and 𝑗. The partitioning is carried out by exploiting the topological map 
formulation described in Section 1.1 to select a subset of trees based on the 𝑘-hop neighborhood to be used 
in the partitioned update step. Therefore, the observation models ℎI(𝛍) and ℎK(𝛍) changes into 

 ℎ*I2𝛍𝒩(*)!3 = 𝑹'& (𝒍* − 𝒕), 𝑪I ∈ 𝑅<×P?G<Q𝒩(*)!QR 
 

(10) 

 ℎK2𝛍𝒩(*)!3 = 𝒕, 𝑪K ∈ 𝑅<×P?G<Q𝒩(*)!QR 
 

(11) 

The new observation models in Equations (10)-(11) are the core of the proposed SLAM architecture since 
they do not consider anymore the full state µ, but just a portion of it. This allows keeping the computational 
burden of the correction step in the real-time domain, enabling the proposed EKF architecture to properly 
scale with the field extent and to satisfy the second requirement of SLAM in hazelnut orchards. To carry out 
the EKF update step, we rely on the idea of the Schmidt partial update [6]. An illustration of this strategy is 
reported in Equations (12)-(15). The main idea is to dynamically perform a coordinate transformation by 
means of a proper transformation matrix 𝑻, namely a permutation matrix, in order to  transform the state 
vector µ into a state vector µ� composed of two blocks, one block collecting all the states to be updated 𝛍@ 
and one block collecting the remaining part of the states 𝛍B, that is 

 𝛍 = d𝒑 𝒍( ⋯ 𝒍- 𝒍; ⋯ 𝒍Hf
/ ,					𝛍® = 𝑻𝛍 = [𝛍@ 𝛍B]/  

 

(12) 

where 𝛍@ = 𝛍𝒩(-,;)%  and µB are defined respectively as: 

 𝝁@ = [𝒑 𝒍- 𝒍;]/ , 				𝝁B = [𝒍( ⋯ 𝒍H]/  
 

(13) 

Similarly, the covariance matrix  𝑷 is re-arranged in a block-wise manner. In particular, the transformed  
covariance matrix 𝑷° has a block-diagonal composed of  a block 𝑷@@ which embeds the variables to consider 
in the update step (𝑖. 𝑒. the 2D position of the robot and the 𝑘-hop neighbors) and of a block 𝑷BB which 
embeds the variables that will not be taken into account during the update step, that is 

 

𝑷 =

⎣
⎢
⎢
⎢
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⎢
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𝑷= 𝑷=J% ⋯ 𝑷=J! 𝑷=J' ⋯ 𝑷=J(
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, 𝐏° = 𝐓 𝐏 𝐓,( = µ
𝑷@@ 𝑷@B
𝑷B@ 𝑷BB

¶ 

 

 
 
 
 

(14)  

where 𝑷@@ = 𝑷𝒩(-,;)%  and 𝑷BB are defined respectively as 
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𝑷@@ = ·

𝑷= 𝑷=J! 𝑷J!J'
𝑷=J!
/ 𝑷J! 𝑷J!J'

𝑷=J'
/ 𝑷J!J'

/ 𝑷J'

¸,    		𝑷BB = ¹
𝑷J% ⋯ 𝑷J%J(
⋮ ⋱ ⋮

𝑷J%J(
/ ⋯ 𝑷J(

º 
 

(15) 

 

 

Algorithm I – EKF SLAM Algorithm 

Data: State µ 2 R
m, Covariance P 2 R

m⇥m, Observations O 2 R
n

Given

- Transition model: µt+1 = f(µt,ut)

- Measurement models: yL = h
L(µ), yG = h

G(µ)

for each new observation oj 2 O do

if oj 2 wheel encoders then
u = oj

Nu  computeInputNoise(u)

At =
@f

@µ

���
µ,u

, Bt =
@f

@u

���
µ,u

PredictionStep(A,B,u,Nu,µt,P t)
else if oj 2 LiDAR then

zL
j = oj

yL
i  DataAssociation(zL

j )
byi  EstimatedMeasurement()

CL =
@h

L

@µ

���
µ,u

UpdateStep(CL,yL
i , byi,N l,µt,P t)

else if oj 2 GPS then

if oj.Covariance.norm() > trGPS then
continue

zG = oj

N g  computeGPSNoise(zG)
by  EstimatedMeasurement()

CG =
@h

G

@µ

���
µ,u

UpdateStep(CG, zG
, by,N g,µt,P t)

end

PredictionStep(A,B,u,Nu,µ,P )

µ = µ+ Au

P = APAT +BNuB
T

UpdateStep(C, z, h, N , µ, P )

{P xx,P xy,µx} PartitionsExtraction(P ,µ)

K = P xxC
T (CP xxC

T +N )�1

µx = µx +K(z � h)

P xx = (I �KC)P xx(I �KC)T +CNCT

P xy = (I �KC)P xy

P yx = P T
xy

Algorithm 1: EKF SLAM Algorithm



    Precision Farming of Hazelnut Orchards (PANTHEON) 
___________________________________________________________________________________________________________ 

PANTHEON Document D.6.1_Title_Rel.01_20200430   

SCADA for Agriculture
PANTHEON

18 

Note that, from an implementation standpoint, the computation cost involved in the inversion of the matrix 
𝑻 is almost negligible, even when the map has considerable dimensions, since permutation matrices are 
orthogonal (i.e. 𝑻,( = 𝑻/). The 𝑘 neighborhood size is a design parameter of the proposed architecture and 
its choice is a trade-off between the computational burden of the state update step and its optimality. 
Indeed, as reported in the experimental Section 1.4.5, the smaller the neighborhood size, the lower the 
resulting accuracy of the map.  This simple heuristic allows keeping an almost constant computational 
complexity. The only operations that grow in complexity as the size of the map increases are the extraction 
and the update of the 𝑷@B partition of the covariance matrix. However, this growth follows a linear trend 
and the actual computational time involved in these operations is almost negligible. 

Despite the simplicity of the proposed update policy, when it is implemented in a real EKF-SLAM architecture 
some issues may arise. Indeed, it is well-known that in standard EKF-SLAM architectures the covariance 
matrix can potentially become negative-definite due to numerical approximations or to not well-handled 
non-linearities [7]. A widely used solution is to rely on the Joseph form update, which is calculated on squared 
terms, thus guaranteeing a positive solution. For this, in Algorithm I, the 𝑷𝒙𝒙 update is performed using the 
latter approach.  

We would like to point out that, the prediction step is updated every time a new encoder odometry is 
available. Normally this rate should be as high as possible in order to reduce the Δ𝑡 and to have more accuracy 
in the prediction of the new robot pose. On the contrary, the LiDAR and GPS corrections occur when new 
data is available and depends moreover on the specifications of the sensors. A further discussion is needed 
for GPS correction. This step, indeed, could not be always beneficial for the algorithm. The GNSS could be 
unreliable under foliage, especially when the orchards are in a fully vegetative state, or for a temporary signal 
loss of RTK correction emitters. On the other hand, the GPS measurement is provided with its own covariance 
matrix which expresses the level of precision of the current measurement. The GPS correction step is thus 
performed only when the measurement covariance matrix norm is below a specific threshold of 𝑡𝑟KT%. 
Finally, to associate new LiDAR measurements to the landmarks in the map, as reported in Algorithm I, we 
make use of a data association process which we discuss in the next section. 

1.4.2 Data Association 
Data association is the problem of deciding which noisy measurement corresponds to which existing 
landmark. Notably, this problem is further complicated by considering the possible existence of previously 
unknown landmarks in the map and the possibility of misleading measurements, i.e., outliers. 

Specifically, in the considered working scenario, this process consists of associating the 2D landmarks 
representing the hazelnut trees with the 𝑜 objects perceived by the on-board sensors 𝓑 ∈ 𝑅7. In addition, in 
case the perceived objects do not belong to the map of the orchard (𝑒. 𝑔. rocks, people, or other obstacles), 
the data association process has to classify them as outliers and send their position to the robot navigation 
module. We refer the reader to [1] for a comprehensive description of the navigation module installed on 
the PANTHEON platforms.  

The data association is a delicate process and even a few wrong associations could potentially lead the entire 
SLAM to become unstable and, eventually, to diverge. In this work, to obtain a reliable data association step, 
we employ a 3D LiDAR sensor that returns, at each new measurement, a set of 𝑙 3D points ℒ ∈ 𝑅J. Such 
points are arranged on 𝑛U  planar rings which provides, in total, a vertical Field Of View (FOV) of 𝐹𝑂𝑉N degrees. 
In addition, each ring has, in general, a planar FOV of 360 degrees. The angular resolution among the rings is 
𝐹𝑂𝑉N/𝑛U  degrees. According to the relative mounting orientation of this sensor on the moving platform, 
there will be a ring which is parallel to the robot chassis, henceforth denoted as horizontal ring, and a certain 
number of rings with a positive angle with respect to the planar ring. In this work, we assume to know the 



    Precision Farming of Hazelnut Orchards (PANTHEON) 
___________________________________________________________________________________________________________ 

PANTHEON Document D.6.1_Title_Rel.01_20200430   

SCADA for Agriculture
PANTHEON

19 

3D transformation 𝑻I& that maps the measured set of 3D points from its local reference frame ℱℳ  to the 
robot body reference frame ℱℬ. The choice of a LiDAR as the main perception sensor comes from different 
considerations: (i) its usual availability on autonomous vehicles for navigation purposes, thus decreasing the 
overall cost, (ii) its robustness against the environmental conditions, such as illumination and (iii) the 
disposition of the sensed 3D points into rings according to a set of scanning angles. The latter property 
enables the possibility of considering the points as belonging to independent planes. Thus, by removing the 
𝑧 component from each ring, it is possible to reason on different 2D point clouds and to speed up the data 
processing. On the other hand, point clouds and, in general, 3D data in orchards present some specific 
challenges to consider: 

• the process needs to be independent of the seasonal effects, such as the presence or the total 
absence of the foliage of the trees (see Figure 6); 

• the process needs to be robust to outliers, such as grass, suckers or human operators moving nearby 
the robotic vehicle.  

To handle those challenges, we process the 3D LiDAR data by considering a double-ring clustering approach 
which can be summarized in the following steps: 

I. clusterization of the 2D points lying on a ring with a positive angle αV w.r.t. the horizontal ring 
(henceforth denoted as the upper-ring); 

II. construction of bounding boxes 𝓑𝓑 around the obtained clusters in the upper-ring; 
III. projection of the bounding box onto the horizontal (or lower) ring; 
IV. calculation of the center of mass for the 2D points belonging to each bounding box. 

 

Algorithm II – 3D Data Processing Pipeline 

The whole 3D processing pipeline is also reported in Algorithm II. Step (i) enables the clustering procedure to 
only consider points belonging to the hazelnut trees based on a simple observation: higher the ring, lower 
the probability to intercept grass, stones, or other ground outliers. Although this approach may increase 
robustness against false positives, a few additional issues can arise such as in the case of adult trees for which 
the canopy may overlap and the clustering may yield poor results. Therefore, the choice of the αV depends 
on the specific working scenario. Steps (ii), (iii), and (iv), filter out the outliers in the planar ring and enables 
the process to better estimate the central point of each tree. We point out that, despite the robustness, it is 
unlikely that the 3D processing pipeline described so far accurately estimates the center of the sensed tree. 
However, the proposed approach can successfully estimate the actual tree center by exploiting multiple 

Data: 3D Point Cloud L 2 R
l, Upper-Ring Angle ↵u

Result: 2D Observed Trees Center B 2 R
o

{Lu,Ll} RingWiseDataSplit(L)
Bu  Clustering(Lu)
for all cluster bi 2 Bu do

BB  BoundingBoxes(Bu)
BB  LowerRingProjection(BB)
for all lower-ring bounding boxes bbi 2 BB do

pb,i  PointsInBoundingBox(Ll, bbi)
B.push back(CenterOfMassCalculation(pb,i))

end
end
return B;

Algorithm 2: 3D data processing pipeline.

i) clusterization of the 2D points lying on a ring with a positive angle ↵u w.r.t. the
horizontal ring (henceforth denoted as the upper-ring);

ii) construction of bounding boxes BB around the obtained clusters in the upper-ring;

iii) projection of the bounding box onto the horizontal (or lower) ring;

iv) calculation of the center of mass for the 2D points belonging to each bounding box.

The whole 3D processing pipeline is also reported in Algorithm 2. Step (i) enables the
clustering procedure to only consider points belonging to the hazelnut trees based on a
simple observation: higher the ring, lower the probability to intercept grass, stones, or other
ground outliers. Although this approach may increase robustness against false positives, a
few additional issues can arise such as in the case of adult trees for which the canopy may
overlap and the clustering may yield poor results. Therefore, the choice of the ↵u depends
on the specific working scenario. Steps (ii), (iii), and (iv), filter out the outliers in the planar
ring and enables the process to better estimate the central point of each tree. We point
out that, despite the robustness, it is unlikely that the 3D processing pipeline described so
far accurately estimates the center of the sensed tree. However, the proposed approach can
successfully estimate the actual tree center by exploiting multiple observations of the same
tree from di↵erent point of views collected while navigating the orchard in its update process.
By doing so, the 3D data processing ends up with 2D positions which roughly indicate the
centers of mass of trees trunks whereby we feed the data association step. We remark that,
di↵erently from (Cheein et al., 2011), this simple pipeline allows for a flexible and adaptable
data association according to the real working conditions of the field, without implicitly
assuming the terrain to be weedless.

Finally, the data association is carried out by standard maximum likelihood, mutual exclu-
sion, and negative information heuristics, as described in (Montemerlo and Thrun, 2003).
Moreover, to increase the robustness of the Data Association we further rely on a plating
pattern estimation process, which we discuss in the next section.
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observations of the same tree from different point of views collected while navigating the orchard in its 
update process. By doing so, the 3D data processing ends up with 2D positions which roughly indicate the 
centers of mass of trees trunks whereby we feed the data association step. We remark that, differently from 
[8], this simple pipeline allows for a flexible and adaptable data association according to the real working 
conditions of the field, without implicitly assuming the terrain to be weed less.  

Finally, the data association is carried out by standard maximum likelihood, mutual exclusion, and negative 
information heuristics, as described in [9]. Moreover, to increase the robustness of the Data Association we 
further rely on a plating pattern estimation process, which we discuss in the next section. 

1.4.3 Planting Pattern Estimation 
A useful cue when developing a SLAM architecture for agricultural robots in orchards is the knowledge of the 
planting pattern, i.e., the geometric arrangement of the plants across the field. Specifically, by making 
available this information to the navigating platform enables for a more robust data association and outlier 
rejection, and also enables the robot to distinguish among planted trees and other obstacles. In this work, 
we model the planting pattern estimation problem as a chessboard with a rectangular chess fitting process 
(see Figure 7). Specifically, we use a rectangular grid to fit any possible planting scheme.  The fitting process 
is carried out by relying on a Kalman Filter (KF), considering as state the planting pattern 𝒔 = [ 𝒄	ϕ ]/  where 

𝒄 = d 𝑐@	𝑐B  f
/

 are the scale factors along the two major chessboard directions and ϕ the rotation angle which 
aligns the chessboard with the geo-referenced map estimated by the EKF-SLAM. The transition and 
observation models for this KF are defined as follows 

 𝒔2G( = 𝑓W(𝒔2) = 𝒔2 
 

 
(16) 

 ℎ%(𝒔2) = 𝑧𝒩(𝒾)!,2
% − 𝒔*,2G( 

 
 

The planting pattern has no dynamics, thus the transition function 𝑓W(𝒔2) degenerates to the identity matrix 
𝑰 ∈ 𝑅?×?. The observation model results from the difference between 𝒛H(*)!,2

%  which can be considered as a 
virtual sensor measuring the chessboard distances of the 𝑘-hops landmarks neighbourhood and the actual 
chessboard estimate 𝒔*,2G(. 

 

Figure 7 - A bird-eye view of a hazelnut orchard.  In particular, the red shaded area represents the obstacle zone O, while the dotted 
yellow lines describe the planting pattern chessboard directions. For the tree in position (𝑐) , 𝑟)) the 1-hop neighbourhood is defined 

as the set of trees:  [(𝑐) , 𝑟)*+), (𝑐) , 𝑟),+), (𝑐)*+, 𝑟)), (𝑐),+, 𝑟))]. 
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Algorithm III – Outliers Rejection Heuristic 

1.4.4 Outliers Detection 
Modelling the orchard environment as a grid allows the robot to make an easier inference about where the 
trees are located or where they are likely to be located. At the same time, it allows to distinguish objects 
which do not belong to the orchard by exploiting the planting pattern model. 

To exploit the planting pattern as an outlier rejection cue, we define, for each tree, an obstacle space 𝑂 such 
that all the LiDAR measurements 𝑧*  lying in it are likely to be external objects (see Figure 7). The whole outlier 
rejection process is reported in Algorithm III. All the measurements marked as external objects are then 
rejected and not considered in the update step of the EKF. At this point, we reiterate that locating external 
objects is a useful capability for autonomous platforms. For example, it could prove useful in a Human-Robot 
Interaction (HRI) farming settings where some specific tasks are still performed manually, and adequate 
maneuvers are required for a safe interaction with human operators [10], [11]. Finally, depending on the 
nature and size of the obstacles, the navigation module may need their position to plan a safe trajectory for 
inspecting the field [1]. 

1.4.5 Experimental Results 
Experiments have been carried out with data acquired in one of the real-word hazelnut orchards of the 
PANTHEON project, within the “Azienda Agricola Vignola”, a farm located in the municipality of Caprarola, in 
the province of Viterbo, Italy (see Figure 8(right)). More specifically, we used a portion of field 18 with an 
area of about 1 hectare. The planting pattern of the considered field is 5 × 5	𝑚. Figure 8(left) shows the 
ground vehicle prototype, namely SHERPA HL robotic platform R-A, which has been used for the experimental 
validation. The platform is equipped with a RTK-enabled Trimble MB-Two GNSS receiver with a single antenna 
mounted on the top of the robot, a forward looking Velodyne VLP-16 Puck LITE 3D LIDAR and wheel encoders 
that provide a rough odometry estimation. Particularly, the latter has been used in the prediction step of the 
EKF. The EKF SLAM and the planting pattern KF filters have been coded in c++, and the communication with 
the sensors is implemented through a ROS node. Finally, the clustering of the 3D points in the lower ring has 
been carried out through the DBSCAN algorithm [12]. To test the proposed approach under different seasonal 

st+1 = fs(st) = st

h
S(st) = zS

N (i)k,t � si,t+1
(10)

The planting pattern has no dynamics, thus the transition function fs(st) degenerates to
the identity matrix I 2 R

3⇥3. The observation model results from the di↵erence between
zS
N (i)k,t which can be considered as a virtual sensor measuring the chessboard distances of

the k-hops landmarks neighbourhood and the actual chessboard estimate si,t+1.

7 Outliers Detection

Data: Measurements Z 2 R
n, Landmarks L 2 R

m

Result: Boolean Vector B 2 R
n

for all zi 2 Z do
O computeObstacleSpace();
zi  sensorToGrid(zi);
for all li 2 L do

li  mapToGrid(li);
D.append(distance(li, zi));

end
D.sort();
if D.firstElement() 2 O then

B.append(false);
else

B.append(true);
end
D.clear();

end
return B;

Algorithm 3: Outliers Rejection Heuristic

Modeling the orchard environment as a grid allows the robot to make an easier inference
about where the trees are located or where they are likely to be located. At the same time,
it allows to distinguish objects which do not belong to the orchard by exploiting the planting
pattern model.

To exploit the planting pattern as an outliers rejection cue, we define, for each tree, an
obstacle space O such that all the LiDAR measurements zi lying in it are likely to be external
objects (see Figure 3). The whole outlier rejection process is reported in Algorithm 3. All
the measurements marked as external objects are then rejected and not considered in the
update step of the EKF. At this point, we reiterate that locating external objects is a useful
capability for autonomous platforms. For example, it could prove useful in a Human-Robot
Interaction (HRI) farming settings where some specific tasks are still performed manually
and adequate maneuvers are required for a safe interaction with human operators (Cheein
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conditions, we gathered three different datasets, namely 𝐷𝑎𝑡𝑎𝐴, 𝐷𝑎𝑡𝑎𝐵, and 𝐷𝑎𝑡𝑎𝐶. The total travelled 
distance for each dataset has been of about 400, 900,and 700 meters, respectively. In particular, 𝐷𝑎𝑡𝑎𝐴 has 
been collected in August which is the harvesting period, while 𝐷𝑎𝑡𝑎𝐵 and 𝐷𝑎𝑡𝑎𝐶 were collected in January 
and February, respectively, which are in the vegetation rest period (see Figure 8). 

 

Figure 8 - On the top left, the SHERPA HL robotic platform prototype R-A, on the top right a satellite image on the experimental 
fields used in the PANTHEON project.  On the second column, a hazelnut orchard in the harvesting and vegetation rest. 

1.4.6 Evaluation Metrics 
In this section, we describe the metrics that have been used to evaluate the performance of the proposed 
SLAM architecture. In general, the quality of a SLAM approach is defined in terms of localization and mapping 
accuracy which can be computed by resorting to some ground truth information [13]. In our setting, the only 
information that can be used as ground truth is data coming from the RTK-GPS. In this regard, since GPS data 
is used in the EKF update step, we propose three different evaluation metrics to evaluate the performance 
of the proposed SLAM architecture. 

I. the translational drift relative error 𝑡RMSE; 
II. the landmark positioning error 𝑚RMSE; 

III. the planting pattern estimation error 𝑝𝑝err; 

The first two metrics make use of the Root Mean Squared Error (𝑅𝑀𝑆𝐸) defined as 

 

𝑅𝑀𝑆𝐸(𝑥) = Î|
(𝑥� − 𝑥)<

𝑁

H

*:(

 

 

 
(17) 

 

where 𝑥� is the estimate and 𝑥 is the parameter to be estimated. We denote the translational drift relative 
Root Mean Square Error as the 𝑡RMSE, and the map Root Mean Square Error as the 𝑚RMSE.  
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The first metric evaluates the SLAM localization capabilities. This is achieved by running the EKF using only 
LIDAR information while the RTK-GPS data is used as ground truth. In this regard, given the nature of the 
ground truth information, we compute the 𝑡RMSE only with respect to the 2D position of the robotic vehicle, 
i.e.  the heading of the vehicle is not considered. Notably, this metrics provides also information  regarding 
the robustness of the proposed architecture, as a low value of the 𝑡RMSE index indicates that the proposed 
algorithm can provide a consistent and reliable estimation even in the case of a temporary malfunction of 
the RTK-GPS (that may happen in specific working scenarios, such as the correction signal loss in presence of 
foliage). 

The second metric evaluates the SLAM mapping capabilities. This is achieved by running the EKF using the 
full set of sensors in the SLAM pipeline. As mentioned before, the quality of the map is usually computed by 
comparing the map obtained by the EKF with some available ground truth information, [14]–[16]. In our 
setting, given the landmark-based nature of map, we compute 𝑚RMSE error metrics by comparing the 
estimate of a landmark location with an accurate geo-referencing of its actual location. 

Finally, the third metric evaluates the planting pattern estimation capabilities. This is achieved by measuring 
the Euclidean distance 𝑝𝑝err defined as 

 𝑝𝑝err = �(𝒑𝒑Ï − 𝒑𝒑)< 
 

 

where 𝒑𝒑Ï  represents the estimated planting pattern while 𝒑𝒑 the real one. Differently from the previous 
metrics, we measure the planting pattern estimation capabilities with and without the GPS update in the EKF 
to evaluate its effects on the estimation process. We finally remark that the 𝑡RMSE is commonly adopted to 
benchmark SLAM approaches, see for instance [17] [18]. Differently, we purposely chose the other two 
metrics by considering the specific problem under analysis and the available ground truth information, such 
as the accurate geo-localization of a portion of the map and the knowledge of the actual planting pattern. 

1.4.7 SLAM 
According to the above-introduced metrics, we evaluate the proposed SLAM architecture on three datasets, 
namely 𝐷𝑎𝑡𝑎𝐴, 𝐷𝑎𝑡𝑎𝐵, 𝐷𝑎𝑡𝑎𝐶. Moreover, in order to analyze the effects of the partitioned update on the 
map and trajectory estimations, for each dataset we run the proposed SLAM approach with both the full map 
and with the following set of 𝑘-hop neighborhood (1,2,3,4,5,6,8,10). The results are reported in Table III 
where, for each row, we highlight the metrics corresponding to the usage of the full map in the update 
process and the 𝑘-hop neighborhood configuration which results in the lowest error metrics.  

A first important outcome regards the 𝑡RMSE. In general, the smaller the 𝑡RMSE, the closer the estimated 
trajectory to the ground truth one. We recall that, in this context, the estimated trajectory is obtained by 
using only the LiDAR in the update step of the EKF, while the ground truth is given by the RTK-GPS. As reported 
in Table III, the 𝑡RMSE remains bounded between 3 and 5 centimeters when using a 𝑘-hop neighborhood with 
𝑘 ≥ 6. The positive entailment of this result is twofold: (i) the proposed SLAM architecture is not highly 
dependent from the RTK-GPS data, and offers reliable and consistent performance even without its active 
usage; (ii) the temporary absence of the RTK-GPS update step, such as in presence of RTK signal losses or 
when the measurement covariance is above the allowed 𝑡𝑟KT%, does not represent a real issue.  

Notably, the 𝑡RMSE is higher in the 𝐷𝑎𝑡𝑎𝐴. This can be easily explained by the presence of the sucker at the 
base of the hazelnut trees, i.e. shoots that grow at the base of the tree. Indeed, their presence affects the 
data association process by introducing noise in the computation of the trunk center of mass. The same trend 
is indeed confirmed in the 𝑚RMSE and 𝑝𝑝err metrics which are slightly worse than their respective values in 
𝐷𝑎𝑡𝑎𝐵 and 𝐷𝑎𝑡𝑎𝐶.  
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   Neighborhood Size 
Dataset Metrics [m] GPS 1 2 3 4 5 6 8 10 full 

   
 𝐷
𝑎𝑡
𝑎𝐴

 𝑡RMSE  0.21 0.14 0.09 0.06 0.07 0.06 0.05 0.05 0.05 
𝑚RMSE ✔"# 0.277 0.259 0.259 0.253 0.250 0.249 0.245 0.244 0.239 
𝑝𝑝err  0.151 0.144 0.128 0.103 0.09 0.082 0.078 0.066 0.051 
𝑝𝑝err ✔"# 0.089 0.083 0.072 0.052 0.047 0.044 0.045 0.041 0.043 

𝐷
𝑎𝑡
𝑎𝐵

 𝑡RMSE  0.11 0.09 0.09 0.08 0.06 0.04 0.04 0.03 0.03 
𝑚RMSE ✔"# 0.256 0.251 0.243 0.242 0.239 0.240 0.238 0.231 0.228 
𝑝𝑝err  0.139 0.131 0.126 0.084 0.07 0.051 0.043 0.04 0.042 
𝑝𝑝err ✔"# 0.101 0.087 0.072 0.061 0.05 0.042 0.041 0.04 0.037 

𝐷
𝑎𝑡
𝑎𝐶

 𝑡RMSE  0.11 0.12 0.09 0.08 0.06 0.05 0.04 0.04 0.04 
𝑚RMSE ✔"# 0.256 0.248 0.236 0.238 0.234 0.236 0.235 0.231 0.225 
𝑝𝑝err  0.141 0.133 0.111 0.075 0.061 0.049 0.044 0.039 0.040 
𝑝𝑝err ✔"# 0.102 0.083 0.052 0.052 0.044 0.041 0.035 0.035 0.033 

Table III - Evaluation metrics for the three different datasets 𝐷𝑎𝑡𝑎𝐴, 𝐷𝑎𝑡𝑎𝐵, 𝐷𝑎𝑡𝑎𝐶.  The results are sorted according to the 
neighborhood region size, in an increasing order.  For each row, we highlight in bold the results obtained with the full map and with 

the best neighborhood region size. 

A qualitative example of estimated trajectories with different path lengths is reported in Figure 9(left). It 
should be noticed that an image rotation is required to overlay the satellite images with the map and 
trajectory estimated by the proposed SLAM architecture. Indeed, this rotation can be explained by the fact 
that satellite images are expressed in terms of the magnetic north pole, while GPS measurements are 
expressed in terms of the geographic north pole. 

Another interesting outcome concerns the overall accuracy of the proposed architecture on all the collected 
datasets. It is in fact possible to observe in Table III how the error metrics have similar values even among 
datasets collected in different seasons, proving the robustness of the proposed approach under different 
working conditions. We recall, indeed, that a hazelnut orchard usually shows drastic appearance variations 
between the harvesting and the vegetation rest period, such as the loss of the foliage and the presence of 
weed and external grass vegetation. An example of such a drastic appearance variation is depicted in       
Figure 8. 

A further, noteworthy, result is the evolution of the performance degradation according to the path length 
used in the neighborhood selection. The smaller the 𝑘-hop neighborhood the larger the error metrics. It is 
possible to observe the same trend across almost all the metrics and the collected datasets. However, the 
performance degradation rate is small and, even with a 𝑘-hop of 1, no drift phenomena appear. In addition, 
the performance degradation effect is rather negligible for a 𝑘-hop neighborhood with 𝑘 ≥ 8. As for 𝑘 ≥ 8, 
the error metric is almost equal to the full map setup. This also involves that having 𝑘 ≥ 8 does not improve 
the performance of the proposed SLAM architecture. Moreover, in some specific conditions, such as in 
𝐷𝑎𝑡𝑎𝐶, the planting pattern estimation error 𝑝𝑝err obtained without a partitioned map update results being 
even smaller than the full map setup. This result may seem counter-intuitive for the reader, as theoretically 
by letting 𝑘 to tend to infinity the error of the partitioned estimation tends to converge to the error of the 
full estimation. However, due to heterogeneity in the plant arrangement across the field (i.e., usually trees 
are not strictly arranged according to the planting pattern) a local estimation of the planting pattern may be 
more accurate. 
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Figure 9 - The left image depicts the estimated trajectory in DataA with different path lengths where the green, blue and red lines 
represent the RTK-GPS reference and the trajectories estimated with k-hop neighborhood of 5 and 2, respectively. The right image 

depicts the estimated trajectories in 𝐷𝑎𝑡𝑎𝐶. Specifically, the green line represents the estimated trajectory starting with an 
unknown map of the target orchard, while the red line presents the estimated trajectory starting within the former map and moving 

in a previously unseen part of the field. In both images, the yellow points represent the estimated landmarks. Finally, the plots are 
overlaid on geo-referenced satellite images. 

A last remark is about the 𝑝𝑝err. Differently from 𝑡RMSE and 𝑚RMSE, this error metrics has been tested with 
and without the RTK-GPS update step. We recall that a proper estimation of the planting pattern allows for 
a reliable outlier detection, such as detecting obstacles that do not belong to the orchard. It is possible to 
observe in Table III how the 𝑝𝑝err remains almost unchanged for a 𝑘-hop neighborhood with 𝑘 ≥ 8, even 
without the exploitation of the GPS sensor. These results are a further demonstration of the not strict 
dependence of the proposed EKF from this sensor, and of the reliability of the proposed architecture in 
estimating the planting pattern. 

A further, qualitative, evaluation is reported in Figure 9(right) which shows two estimated trajectories, 
together with the map built. The whole experiment has been done by using 𝐷𝑎𝑡𝑎𝐶. The objective is to show 
the performance of the proposed SLAM architecture in expanding a map by navigating in a previously unseen 
portion of the orchard. The green line represents the trajectory followed by the robot when building the 
initial map, while the red line starts in the map and moves west, adding the new landmarks into the starting 
map. It is possible to observe how almost all the landmarks are correctly placed on their respective tree 
centres. The few exceptions are represented by those trees which lie on the boundaries of the map (e.g. the 
trees with IDs (67, 62, 196, 198,217)). Indeed, due to their peripheral position, these trees have been 
perceived a few times and just by a single side and therefore the SLAM does not have accurate knowledge 
about their location in the field. Finally, a qualitative evaluation of the obstacle detection capabilities is 
reported in the attached video. 

1.4.8 Computational Complexity Analysis 
In this section, we evaluate the real-time capabilities of the proposed SLAM architecture. To do so, we record 
the time effort required to perform the update step according to the number of landmarks in the map and 
to the path, the length used to retrieve the 𝑘-hop neighborhood. Specifically, we refer to the experiments 
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carried out with 𝐷𝑎𝑡𝑎𝐵 in Table III. The results are reported in Figure 10, where we also plot the time 
threshold to guarantee real-time performance. The results have been obtained on a laptop with an Intel i7-
8750H CPU. The real-time threshold has been computed by considering the LiDAR acquisition rate, which is 
10 Hz. Ideally, having the update step computational burden constantly below this threshold means that no 
LiDAR measurement is lost, and the SLAM approach works at a full rate. 

 

 

Figure 10 - Plot of the computational time required to perform an update step according to the neighborhood size and to the 
number of trees in the map. The dashed line represents the real-time threshold which has been computed by considering the LiDAR 

acquisition frequency of 10 Hz. 

As one would expect, the time effort for the full map update grows exponentially, exceeding the threshold 
once the map contains almost 200 landmarks. Differently, the time effort in the cases of the partitioned map 
update step is constantly lower than 60	𝑚𝑠. This proves the real-time capabilities of the proposed approach 
since, how we explain in the previous section, having a 𝑘-hop neighborhood with 𝑘 ≥ 8 does not improve 
the accuracy in the trajectory and map estimations. Another interesting perspective to analyze the results 
reported in Figure 10 is by considering the number of trees considered in the update step. The number of 
trees depends on the 𝑘-hop neighbourhood size which, in case of one observed landmark, can be easily 
obtained as 4(𝑘(𝑘 + 1)/2). The computation of the exact number of trees in case of multiple landmarks is 
complex and, in general, it is bigger or equal to the case of one observed landmark. Given that, carrying out 
an update step in the EKF with a 𝑘-hop neighborhood length of 10 involves more than 220 trees. Despite this, 
the proposed SLAM architecture can successfully keep the computational burden well below the real-time 
threshold. We recall that the extraction and the update of the 𝑷@B partition of the full covariance matrix 𝑷 
grows linearly with the field size. We reiterate that, as pointed out in Section 1.4.1, no actual matrix inversion 
is required being the coordination transformation matrix, a permutation matrix for which the inverse matrix 
is equal to the transpose matrix. 
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Other interesting results concern the computational time trend in the case of partitioned update steps. As 
shown in Figure 10, the time effort follows a sinusoidal-like trend. This can be explained by the trajectory 
performed by the robot in the orchard. Indeed, when the robot reaches the start or the end of its s-shaped 
trajectory, namely, before to turn in order to change row, the partitioned map contains fewer landmarks 
with respect to the case when the robot is in the center of the orchard. This leads to variables size of the 
partitioned covariance matrix in the update step and, therefore, to a variable update step computational 
burden. 

1.5 Global Planning for Monitoring and Agronomic Interventions 
Performing Precision Farming activities requires interventions on individual trees, such as targeted spraying 
or data collection, or on the entire field, such as pest and disease monitoring.  According to the nature of the 
activity and the needs of the plants, a variable effort may be required for each robotic platform in order to 
perform a certain task at a given lo-cation. Therefore, it becomes mandatory to design a global planning 
strategy to optimally move the robotic platforms within the orchard especially when operating in large-scale 
scenarios. We Developed a global planning strategy specifically designed for targeted activities in orchard 
settings. The problem is formulated as a novel Multi-Platform Steiner Travelling Salesman Problem (MP-
STSP). To guarantee the exploitation of multiple moving platforms and the minimization of the overall 
operational time, the proposed formulation explicitly considers the time necessary for each task to be 
performed.  By doing so, the computed itineraries attempt to balance the workload among the deployed 
platforms. More-over, the MP-STSP formulation is general, does not depend on the number of platforms, 
and well fits with different on-field activities, ranging from full field inspection to targeted per-plant 
interventions. We report comprehensive simulation results to numerically demonstrate that the proposed 
planning strategy can be effectively employed to carry out selective precision farming activities within a large-
scale orchard. The proposed planning architecture has been submitted and is currently under review at the 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), an annual flagship conference 
of Robotics & Automation Society (RAS). 

1.5.1 MP-STSP 
In this section, we provide the mathematical formulation of the proposed Multi-Platform Steiner Travelling 
Salesman Problem MP-STSP for Precision Farming. In particular, the goal is to find an optimal path inside the 
orchard such that all the locations on which a per-plant agronomic intervention has to be performed are 
visited while the overall operational time is minimized. To achieve this, we propose a graph-based 
formulation of the MP-STSP by resorting to the graph modeling introduced in Section 1.1. We also assume to 
deploy multiple autonomous platforms which navigate at a constant velocity 𝑣.  

We denote with 𝑉U ⊆ 𝑉 the subset of vertexes encoding the locations that must be necessarily visited 
according to the agronomic task and with 𝑛_ = |𝑉U| its cardinality. Note that, the subset 𝑉U  does not include 
the depot, which we assume, without loss of generality, to be the vertex 𝑣8 for all the robots. Using the same 
notation as before, we will refer to 𝑛` = |𝑅| as the number of robots, with 𝑅 = {𝑟(…𝑟;} its set. 
Furthermore, we introduce the binary decision variables 𝑥-+  for each edge 𝑒- ∈ 𝐸 defined as 

 𝑥-+ = Ò1			𝑖𝑓			𝑟𝑜𝑏𝑜𝑡			ra ∈ R			passes	on	edge			eb ∈ E
0																																																														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
(18) 

In addition, we introduce a binary variable 𝑠*+  to describe if a robot 𝑟+  stops at the required vertex 𝑣*  to 
perform an agronomic task, which is defined as 

 𝑠*+ = Ò1			𝑖𝑓			𝑟𝑜𝑏𝑜𝑡			r+ ∈ 𝑅			stops	in			𝑣* ∈ 	𝑉U
0																																																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(19) 
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We are now ready to provide the proposed Multi-Platform Steiner Travelling Salesman Problem MP-STSP 
formulation. Intuitively, the MP-STSP can be thought as an extension for multiple platforms of the STSP over 
a directed graph 𝒢. The reader is referred to [19] for a comprehensive overview of standard STSP 
formulations. In particular, our formulation follows the approach proposed in [20], where the standard STSP 
formulation is augmented with a Single-Commodity Flow (SCF) by adding the commodity variables 𝑓c, which 
we will refer to as 𝑓-+  in order to take into account the availability of multiple robots.  In particular, the 
following Integer Linear Programming (ILP) formulation can be used to describe the proposed MP-STSP. 

Formulation MP-STSP 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑇;c@ (20a) 

Subject to | | 𝑥-+
.!∈e-(N.)U/∈`

≥ 1∀ 𝑣* ∈ 𝑉U  (20b) 

 | | 𝑥-+
.!∈e-(N$)U/∈`

= 𝑛`  

 

(20c) 

 | 𝑥-+
.!∈e-(N.)

= | 𝑥-+
.!∈e0(N.)

, 

 

 

∀ 𝑣* ∈ 𝑉,	∀ 𝑟+ ∈ 𝑅	(20d) 

 | 𝑓-+
.!∈e0(N.)

− | 𝑓-+
.!∈e-(N.)

= 𝑠*+ , ∀ 𝑣* ∈ 𝑉U , 	∀ 𝑟+ ∈ 𝑅	(20e) 

 

 | 𝑓-+
.!∈e0(N.)

= | 𝑓-+
.!∈e-(N.)

, ∀ 𝑣* ∈ 𝑉 ∖ {𝑉U}, 	∀ 𝑟+ ∈ 𝑅	(20f)	

 

 | 𝑡.!
.!∈f

𝑥-+ + | 𝑐*𝑠*+
N.∈_1

≤ 𝑇;c@ , ∀ 𝑟+ ∈ 𝑅	(20g) 

 

 | 𝑠*U
U/∈`

= 1, ∀ 𝑣* ∈ 𝑉U 	(20h) 

 

 𝑠*+ ∈ {0,  1}, ∀ 𝑣* ∈ 𝑉U , 	∀ 𝑟+ ∈ 𝑅	(20i) 

 

 𝑥-+ ∈ {0,  1}, ∀ 𝑒- ∈ 𝐸,	∀ 𝑟+ ∈ 𝑅	(20j) 

 0 ≤ 𝑓-+ ≤ (𝑛_) 𝑥-+ , ∀ 𝑒- ∈ 𝐸,	∀ 𝑟+ ∈ 𝑅	(20k) 

 

The optimization problem given in the above formulation can be described as follows. The objective function 
Equation (20a) encodes the overall time spent by each single robotic platform to perform the assigned tasks 
at each of the required locations. It is important to highlight that, since the robots are expected to work in 
parallel, 𝑇;c@ represents the overall operational time required by the robots to accomplish the required 
tasks. We model this by formulating 𝑇;c@ as a shared upper bound among the operational time of each 
deployed robots in Equation (20g). Specifically, we define the operational time of the individual robot as the 
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sum of the edge traversing time and the time required for each agronomic intervention,  which are modeled 
as 𝑡.!𝑒- and 𝑐*𝑠*+, respectively.  

The edge traversing cost 𝑑.!  has been embedded into 𝑡_{𝑒_𝑘} 	= 		𝑑_{𝑒_𝑘}/𝑣 while with  𝑐* ∈ 𝑁 we model 
the  operational time required to perform the 𝑖2E  task.  By doing so, we can model different kind of tasks by 
simply referring to the time required to perform them. In this way, the minimization of 𝑇;c@ in the cost 
function (20a) ensures that the workload is shared among all the robotic platforms, while minimizing the 
overall operational time. 

Another important advantage of the proposed formulation, in contrast to standard mTSP approaches, is that 
we do not directly constraint the minimum and maximum number of required nodes to be visited by each 
vehicle. Indeed, the required stops are optimally assigned to the deployed platforms by the minimization of 
the cost function. As a matter of fact, the resulting assignment will depend on the disposition of 𝑉U  inside the 
orchard and on the time required to perform the agronomic tasks.  

Equation (20b) is an extension of the classical Single-Commodity Flow (SCF) formulation [19] for a Multi-
Platform framework, where it is necessary to ensure that each robot departs and ends at the depot (see 
Equation 20c)). The core of this formulation relies on Equation (20e), which now assigns the commodities 
among all the robots. Given the conditions (20h)-(20i), in fact, all the required vertexes 𝑉U  have to be visited, 
but with commodities that are modified exclusively by a single robot. In particular, if a robot leaves a 
commodity for a given required vertex, the other platforms are still enabled to pass through the same node, 
but they will treat it as a non-required vertex, preserving their flow.  

Lastly, Equation (20k) activates an edge in the final tour, if any commodity passes through it. This property 
has now to be ensured for each robot and has been kept as in the classical formulation [19]. Notice that, the 
upper-bound given in Equation (20k) cannot be made any tighter given the fact that there is no prior 
knowledge on the distribution of the selected nodes 𝑉U   among the robots, as the partitioning of the vertexes 
to be visited among the robots is part of the optimization itself.  

We also highlight how this formulation is versatile, as it enables to compute itineraries for different purposes. 
Indeed, it allows to describe a selective intervention by properly defining the set of vertexes 𝑉U  to be visited, 
ranging from a small subset of trees to the entire orchard, and it also allows to describe heterogeneous 
agronomic activities by properly defining their costs 𝑐*  encoding the related operational time. 

Moreover, it should be noticed that for any configuration of the set of vertexes 𝑉U ⊆ 𝑉 to be visited, the 
proposed formulation always finds a feasible solution. On the contrary, this cannot be guaranteed in the 
mTSP or VRP formulations as passing through the same edge 𝑥-+  more than once is not allowed.  Notably, 
given the fact that for an orchard, due to their typical planting pattern, the graph encoding the locations from 
which agronomic interventions must be carried out is usually a grid, no solution can be found for  

mTSP and VRP formulations with 𝑛` > 1 if the depot is considered as part of the grid graph boundaries. In 
this regard, one should impose the depot to be external to the graph and connected to different vertexes of 
the grid. However, in doing so the entries and exits of single robots could be scattered around the grid 
according to the optimal route. More detail concerning this limitation will be described in the next section, 
where the proposed approach is compared against a classic VRP. Notably, also in the case of the single 
platform formulation, such as TSP, the shortest Hamiltonian Path [21] on any 𝑚	 × 𝑛 grid with 𝑚 and 𝑛 odd, 
𝑚	 ≥ 3, has a lower bound of 𝑚𝑛 − 1 + √2. This would require crossing the orchard in diagonal, which is 
forbidden in the context of our application scenario. Another commonly used approach for sharing the 
workload among several platforms is to partition the solution space with some clustering algorithms such as 
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𝑘-𝑚𝑒𝑎𝑛𝑠 [22] in order to assign a competence area to each robot. However, as it will be described in the 
next Section, clustering the required nodes into 𝑘 = 𝑛`  regions via 𝑘-𝑚𝑒𝑎𝑛𝑠 and running the classic STSP 
algorithm for every robot results into a non-optimal solution for our application. This can be explained by the 
fact that clustering algorithms, differently from the proposed approach, normally rely solely on Euclidean 
distances, and do not consider the required time to perform the tasks at the corresponding location in the 
field. As a matter of fact, this could result into an unbalanced workload distribution among the robots, 
dependently on how the 𝑉U  are located within the orchard. 

1.5.2 Numerical Validation 
Simulation results are provided to numerically demonstrate the effectiveness of the proposed global 
planning strategy for targeted per-plant agronomic interventions in large-scale orchards, given in the 
previous section. We focus on a simulated hazelnut orchard farming scenario and  we consider as a case-
study an agronomic monitoring task since:  (i) it represents a crucial operation in precision farming scenarios 
for an effective field management, and (ii) the time needed to collect data at a specific location inside the 
orchard depends  on how many plants must be scanned from that specific location (see Figure 12). 
Specifically, the latter motivation allows defining tasks with different time effort according to their location. 
Simulations have been carried out by resorting to the Robot Operating System (ROS) framework. We used 
the GAZEBO robotic simulator for modeling both the orchard environment and the SHERPA HL R-A, both 
depicted in Figure 11. Specifically, we want to resemble a real data collection campaign where we assume 
that all the robots are required to perform some tree scanning processes. Furthermore, given the grid-graph 
encoding the scanning locations within the orchard, it should be noticed that in a single location up to 4 
different plants can be scanned, see Figure 12. We are thus considering for this example 𝑐* = 𝑐 ⋅ 𝑘, 𝑘 ∈
{1,2,3,4} with 𝑐 representing the time required for one full scan procedure and the non-homogeneity of scan 
times in the map. 

 

 

Figure 11 - An illustration of the simulated SHERPA robotic platforms while following the planned path. On the top left, an 
illustration of the optimal itineraries to follow. Specifically, the dotted lines and the points represent the optimal paths and the 

nodes to visit and are associated to the respective robots according to their colors. 
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Figure 12 - Examples of scanning policies in a small patch of the target field. From left to right, the 4 scans that are necessary to 3D 
reconstruct the tree and the possibility on scan 4 different plants at the same location inside the orchard, respectively. 

 

𝑛`  VRP 𝑘 −𝑚𝑒𝑎𝑛𝑠 MP-STSP 
 𝑇;c@ 𝑇cN0 𝑇;c@ 𝑇cN0 𝑇;c@ 𝑇cN0 

2 875 632.5 790 595 620 620 
3 460 420 790 416.6 460 460 
4 550 313.8 450 357.5 380 370 
5 545 250 410 298 320 316 

Table IV - Total mission time according to the number of deployed robots and of the resolution methods. For each setup, we 
highlight in bold the best 𝑇234. 

The ILP formulation given in the previous section has been written in MATLAB and interfaced with the IBM 
CPLEX version 12.9 solver. The computation runs entirely offline and takes as an input: i) the graph encoding 
all the possible locations on which an agronomic intervention may take place;  ii) the (sub)set of vertexes 
describing the locations that must be necessarily visited; and iii) the  number of scans  𝑐*  to be performed for 
each location.  

The output consists of the optimal way-points sequences as well as the total time cost for each robotic 
platform. These sequences are then sent to a ROS controller node in order to generate motion control 
commands for the simulated Ackermann vehicles. For a comprehensive overview of the navigation 
architecture for Ackermann vehicles that we developed within the H2020 PANTHEON project the reader is 
referred to [1]. The field has been selected to be composed by 6	\𝑡𝑖𝑚𝑒𝑠	8 trees, resulting into a total of 
(𝑛U7gW + 1) ⋅ (𝑛h7JW + 1) = 63 possible scanning locations, with a  planting pattern of 5 × 5	[𝑚] to resemble 
a typical hazelnut orchard within the experimental site available for the H2020 Project PANTHEON. The 
required locations and the number of scans for each node have been set to 

 𝑉_𝑟	 = 	 [22&, 23, 30, 31, 32, 39, 40, 43, 44, 45, 52, 53, 54, 61, 62, 63] 
 

 

 𝑐 = 40 ⋅ [1,1,1,2,1,1,1,1,2,1,2,4,2,1,2,1] 
 

 

Moreover, since we have chosen a squared planting pattern, the edge traversing time is constant and equal 
to 𝑡.! = 5 [𝑠𝑒𝑐], assuming a constant velocity 𝑣 = 1 [𝑚/𝑠𝑒𝑐] for the robots. We also remark that, in the MP-
STSP formulation the starting point is an arbitrary vertex outside the required ones set 𝑉U. For the simulation 
we assumed the node 𝑣8 or depot to be, without loss of generality, the bottom-left corner of the grid. We 
selected the scanning locations forming the set of nodes 𝑉U  to represent a possible capture campaign for 6 
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different hazelnut plants. Notice however that out of |𝑉 | = 16 single stops, 5 of them have to perform a 
double scan (vertexes {31,44,52,54,62}) and 1 of them (vertex 53) has to perform a quadruple scan.  

To highlight the benefits of the proposed approach, we also make a comparison with other approaches. We 
remark that, despite planning has been widely investigated in robotics, to the best of our knowledge there is 
no other algorithm that covers the same functionalities as the one proposed in this work. Therefore, to carry 
out a realistic comparison, we adapted the closest state-of-the-art algorithms, namely a STSP [20] and a VRP 
[23]. Particularly, to enable the former to handle Multi-Platform problems we exploit a 𝑘-𝑚𝑒𝑎𝑛𝑠 heuristic to 
spatially split the 𝑉U  nodes to visit into 𝑛`  clusters. Each cluster is then handled as an independent STSP 
problem. 

Table IV reports the maximum and the average times, 𝑇;c@ and 𝑇cN0 respectively, for different mission 
setups based on the number of deployed robot and on the resolution methods. In particular, it is possible to 
appreciate how the proposed formulation allows a better spreading of the worktime by leading to the lowest 
𝑇;c@ in all the explored configurations. Another interesting outcome derives from the average time 𝑇cN0. It 
can be thought as a direct measure of the workload unbalancement. Indeed, the more different 𝑇;c@ and 
𝑇cN0 are, the more unbalanced the operational times will be. In this regard, the proposed formulation report 
almost the same maximal and average times in all the explored configurations. 

Notably, the same does not hold for the VRP and 𝑘-𝑚𝑒𝑎𝑛𝑠 setups since they do not take explicitly into 
account the operational time. Their workload, indeed, is unbalanced, even reporting cases where one of the 
two statistics is twice the other. Examples of optimal itineraries computed by MP-STSP and the two 
comparing approaches for 𝑛` = 3 are depicted in Figure 13. In particular, the itineraries computed by our 
method leads the 3 platforms to visit {6,6,4} vertexes, respectively. Despite this, the workload is balanced 
since the third robot has to visit the node 53 in which it has to scan the four neighboring plants, thus requiring 
the highest operational time. Differently, the 𝑘-𝑚𝑒𝑎𝑛𝑠 heuristic balances the itineraries on {9,4,3}, leading 
to an unbalanced workload. As it is possible to notice in Figure 13, this is mainly due to the first robot which 
has to visit 9 capturing locations. 

To have a coherent comparison, in the VRP simulations reported in Figure 13, the times of Table IV do not 
consider edges coming/going between the depot and the left-bottom boundaries. One could say that for the 
carried-out simulations all the left-bottom boundaries are considered as to be the real depot. To accomplish 
this, the "virtual" depot denoted as 0 has been connected to all the left and bottom boundary nodes with no 
edge cost. Thus, displayed entries and exits of each single robot have not been forced but they are the result 
from the optimization. One could think to cast the VRP into a Capacitated (C)VRP instance by assign to each 
vertex a different demand thus modeling the different scan times. This would indeed improve the optimal 
path generated for each robot. However, in real settings, this formulation does not reflect our needs since 
we are not concerned about robots capacities and moreover it suffers from the same problems that are 
present in the VRP formulation. The last remark is about the possible collisions among the robotic platforms. 
Collision avoidance for the VRP comes for free, since no robot passes through the same path of the others. 
The same does not hold for the MP-STSP formulation where multiple robots can pass multiple times on the 
same edge. However, the locations where the robots stop to run a scanning process are mutually exclusive. 
Thus, the robots never stop in the same place. On the other hand, to avoid crashes during the routes, we 
relied on a low-lever planner specifically designed for orchard operations which can handle the presence of 
dynamic obstacles within the field, see [1] for further details.  
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Figure 13 - Optimal solutions resulting from three different approaches with 𝑛5 = 3. From top to bottom the rows represent results 
from MP-STSP, 𝑘-𝑚𝑒𝑎𝑛𝑠 and VRP, respectively. The 𝑘-𝑚𝑒𝑎𝑛𝑠 heuristic is obtained by running 3 instances of original STSP 
algorithm. On the third row, for the sake of VRP needs, we added an external depot shared by the 3. 

2 Unmanned Aerial Vehicle 
The aerial platform used in the project Pantheon, the drone DJI M600 Pro, has been mechanically modified 
to host 3 sensors: the Tetracam MCAW 6, the Sony a6100, and a Teax Thermal Capture 2.0. After this 
customization and the setup of state-of-the-art sensors for localization (D-RTK GPS), the system has already 
demonstrated to be able to perform the required remote sensing activities.  

As a result, the main theoretical research carried out on this platform has been focused on the development 
of more efficient path planning strategies. This line of research aims at reducing the flying time required to 
cover a given extension of field and therefore to increase the size of the area covered by flight. The outcome 
of this research is a journal paper that is currently under submission to the IEEE Transactions on Cybernetics 
(IEEE TCyb). 

2.1  Path planning problem 
It is commonly claimed that today the main factors limiting a wide adoption of drones are social and legal 
issues. However, when working on the field to collect data, one discovers that they are not the only limiting 
aspect. Indeed, a major aspect that limits the potential effectiveness of drones (and thus their rentability, 
and ultimately their adoption) is the lack of systematic ways to plan missions so as to maximize the amount 
of information collected. 
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In many applications, remote sensing best practices use post-processed information in the form of an 
orthomosaic [24]. An orthomosaic is essentially a geometrically corrected image obtained thanks to the 
composition of several overlapped photographs [25]. This technique implies an exhaustive and complete 
coverage of the area, commonly using boustrophedon patterns as the one shown in Figure 14, to ensure a 
proper reconstruction of all the elements. In the case of precision farming or other monitoring domains, the 
creation of a complete orthomosaic can be extremely time consuming and might require several flights to 
cover relatively small areas, thus limiting the real-world applicability. This situation is encountered in the 
project PANTHEON, where the farming area exceeds hundreds of hectares. 

 

Figure 14 - Common boustrophedon path planning. 

Given this common limitation in time and resources, the literature has focused on the definition of optimal 
policies that partially cover the area of interest. In this regard, many persistent monitoring works rely on 
graph-based strategies where the latency in between visits to every region is minimized [26]–[28]. However, 
these strategies consider a static and node-independent distribution of the phenomena, which makes them 
non suitable for physical systems with significant dynamics. 

Alternative approaches base their policies on the spatial correlation between the measurements. In these 
works, the mission path is computed such it avoids redundant data and thus gathers the maximum amount 
of information per flight.  In [29], UAVs equipped with omnidirectional sensors perform an information-based 
exploration where the goal is to minimize the time to obtain a predefined measure of data. In environment 
monitoring, the monitored strategy is defined such that the measurement uncertainty of a Gaussian Process 
(GP) regression is minimized [30]. Also, in the field of autonomous underwater vehicles (AUVs), multiple AUVs 
are used to perform the sampling of a scalar field based on the information obtained [31]. These works 
optimize the path regarding the spatial distribution of the possible measurements. Yet they tend to fail in the 
evaluation of the temporal correlation with previous data information, which is a meaningful aspect in most 
persistent monitoring activities. 

In PANTHEON, we assumed (realistically) that the phenomena to be monitored have dynamics and statistical 
properties which are sufficiently well known and that can be exploited in the UAV path planning. In particular 
we e proposed a path planning strategy where the area of interest is only partially covered, and the remaining 
elements are estimated based on the dynamics of the system and the spatial correlation between 
measurements. This approach resembles to a sensor selection problem [32] [33] where the measurement 
points are considered as the selection or not of available sensors in the observer formulation. 

The literature presents a few examples of path planning for spatio-temporal phenomena monitoring [34]–
[36]. Binney et al. [34] defines a recursive greedy algorithm to compute waypoints based on a given indicator 
of the estimation process. As example, given a Gaussian Process, the covariance of the estimation of different 
areas is minimized during a sensing exploration using AUVs. In Garg et al. [35] the authors assume a stochastic 



    Precision Farming of Hazelnut Orchards (PANTHEON) 
___________________________________________________________________________________________________________ 

PANTHEON Document D.6.1_Title_Rel.01_20200430   

SCADA for Agriculture
PANTHEON

35 

dynamic system and perform a multi-vehicle sampling where each robot moves such that the entropy of a 
particles filter is maximized. Lan et al. [36] models the phenomena as Gaussian processes and defines periodic 
trajectories to minimize the largest eigenvalue of the covariance of a Kalman Filter. 

Here, the path planning policy is obtained as part of the estimation process of the monitored phenomena. 
This is achieved by structuring it as an Orienteering Problem (OP) [37]. The Orienteering Problem is a 
combinatorial problem which consists of a node selection where the shortest path in between the selected 
nodes is determined. Given a time or length constraint, the objective is to maximize the score given by the 
visited points. UAV remote sensing activities, due to the flight time restriction and the discrete nature of the 
measurements, are likely to be adapted as an OP. In this context, the set of points represents the possible 
measurement coordinates, the time interval is adapted to the vehicle autonomy, and the cost function is 
some measure related to the measurement point.  

Related works in path planning already rely on an Orienteering problem framework to define tentative 
information-based policies for monitoring activities. In [38], the information obtained is maximized using a 
quadratic utility function to represent the spatial relation between the different measurement points. More 
recently, Bottarelli et al. [39] introduce an Orienteering-based path planning used to optimize a level set 
estimation.  

For PANTHEON, we have developed a method where the measurement points are selected such the accuracy 
of the level sets classification is maximized. The main contribution with respect to the existing literature is 
the inclusion of the update step of the Kalman filter estimation as part of the Orienteering Problem. This is 
done by resorting to a formulation based on the Fisher information matrix. The main advantage of this 
approach is that the path of the mobile sensor is computed considering the process dynamics, the estimation 
uncertainty and the existing fixed sensing structure. By doing so, it allows to define the optimal combination 
of the UAV remote sensing with additional sensing devices by resorting to an observer-based architecture. 

The developed strategy provides an offline computation of the optimal sensing points over one step ahead 
horizon of the estimation process. This approach allows to obtain the optimal path in cases where the 
coverage is done with unknown periodicity or when the time gap between flights is too large.  

In order to solve the stated problem, we propose a Mixed-Integer Semi-Definite Programming (MISDP) 
formulation where the minimum eigenvalue of the information matrix is maximized. This formulation allows 
to obtain the optimal solution for small instances of the problem. Additionally, for the case of large-scale 
scenarios, two heuristics are proposed along with an exhaustive computational analysis. 

2.2  Path planning for state estimation 
Consider a plane partitioned in 𝑁 areas and let the linear time invariant system 

 
¹
𝑥-G(	(

…
𝑥-G(H

º = 𝐴 ¹
𝑥-	(
…
𝑥-H
º + 𝐵𝑢- +𝑤- 

 
(21) 

 

describe a dynamic phenomenon that we want to observe, where 𝑥-* 	 ∈ 	ℝ) represents the states of the 
system in the 𝑖th area and 𝑢-	 	 ∈ 	ℝ)  is the vector of the (measured) inputs to the system. 𝐴, 𝐵 are matrices 
of consistent dimensions. The system is subject to a process disturbance  𝑤-~	𝑁(0, 𝑄) modelled as a 
stochastic Gaussian noise with covariance 𝑄 ∈ 	ℝ)H×)H, which is typically non-diagonal and has nonzero 
terms for variables describing adjacent areas. 
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To estimate the state of this process, two classes of sensors are assumed available: fixed sensors and mobile 
sensors. Fixed sensors provide continuous measurements of the states in certain specific areas. Mobile 
sensors are sensors that allow to collect measurements at certain specific times from certain specific 
locations.  

Let us consider the matrix 𝐶* 		 ∈ 	ℝi.×) as the measurement matrix associated to the measurements of the 
𝑖th area. This matrix can be defined as 

 
𝐶* = æ𝐶*

6

𝐶*;
ç				∀𝑖 = 1,⋯ ,𝑁,	 

 
(22) 

 

where 𝐶*
6 	 ∈ 	ℝ6.×)	denotes the available fixed measurements of the 𝑖th area and 𝐶*; 	 ∈ 	ℝ;.×) is the 

matrix associated to states that can be measured by the use of mobile sensors.  

The combination of the measurement matrices of each area provides a time-invariant observation matrix 
𝐶*; 	 ∈ 	ℝi×H in the form of a block-diagonal matrix, 

 
𝐶 = ¹

𝐶( ⋯ 0i.×)
⋮ ⋱ ⋮

0i(×) ⋯ 𝐶H
º, 

 

 
(23) 

which defines the information of the system that can be accessed to through the two classes of sensors. 

In this context, to represent the partial availability of the mobile sensor measurements, we introduce the 
binary variable 𝛾-*  to denote the fact that a certain location 𝑖 is measured at time 𝑘 by the mobile sensor (in 
such a case 𝛾-* = 1) or not (in such a case 𝛾-*  =0). Based on this binary variable, we define the measurement 
selection matrix Γ-*  corresponding to each area as 

 
Γ-* = æ

𝐼=.×=. 0=.×;.

0;.,!×=. Λb
* ç 

 

 
(24) 

where the first 𝑝*  rows refer to the static sensor distribution, constant over time, and Λb
* ∈ 	ℝ;.,!×;.  is a row 

selection matrix associated to the measurements of the mobile sensor at each time 𝑘, computed as 

 Λb
* = d𝑒+/f+|k.,!:(

			∀𝑗 = 1,… ,𝑀* , (25) 

where 𝑒+  denotes the 𝑗-th vector of the standard basis	ℝi.. Note that this selection matrix is the null matrix 
Λb
* ∈ 	ℝ8×;.when the area is not measured (𝛾-*  =0) and it is the diagonal matrix Λb

* ∈ 	ℝ;.×;.  when it is 
visited by the mobile sensor.  

Given this, the selection of the available measurements at time 𝑘 is provided by the matrix Γb ∈
	ℝ;.×;. 	,	which computed as 

 Γb = Γb(⨁Γb<⨁…⨁Γb
l (26) 

 

where ⨁ denotes the direct sum operator. The measurement equation of the entire system is  

 𝑦- = Γb(𝐶𝑥- + 𝑣-) (27) 
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where yb ∈ 	ℝi! is the set of measurements available to the system at time 𝑘. The measurement process is 
also subject to stochastic Gaussian noise 𝑣-~𝑁(0, 𝑅) with covariance 𝑅 ∈ ℝi.  

In the definition of the problem, the following assumptions are considered: 

• The mobile data collection is performed by a UAV with a maximum autonomy 𝑇;c@ > 0. 
• The dynamics of the monitored system are considered to be slower than the process of collecting 

the data by the mobile sensors. 
• The measurements performed by the UAV are always located at the centroid of the area 𝑖.  

The main goal of this work is to compute the optimal path to be followed by the UAV at each data collection 
mission, such that the information about the states of the system (21) is maximized given the limited 
autonomy of the vehicle. 

 

2.3  Path planning for state estimation 
Given the fact that the system (21) is a linear system subject to Gaussian noise, a coherent choice is to 
estimate the states of the system by using a Kalman filter. Due to the occasional availability of the mobile 
sensing, the state variables are estimated by using a Kalman filter with intermittent observations (see [40], 
[41]) whose prediction step is 

 𝑥�-|-,( = 𝐴𝑥�-,(|-,( + 𝐵𝑢- (28) 
   
 𝑃-|-,( = 𝐴𝑃-,(|-,(𝐴/ + 𝑄, (29) 

 

and the correction step is 

 𝑥�-|- = 𝑥�-|-,( + 𝐾(𝑦- − 𝐶-𝑥�-|-,() (10) 
   
 𝐾- = 𝑃-|-𝐶-/2𝐶-𝑃-|-𝐶-/ + 𝑅-3

,(
 (11) 

   
 𝑃-|- = 𝑃-|-,( + 𝐾-𝐶-𝑃-|-,(, (12) 
   

where 𝑥�-|- is the estimated value of the state at time 𝑘 given the information available at that time and 𝑃-|- 
is the error covariance matrix of the estimation. Note that, for the sake of simplicity, the time-variant 
matrices 𝐶-and 𝑅- denote the products Γ𝐶	and Γ𝑅	respectively. 

The amount of information regarding the state estimation process is given by the error covariance matrix of 
the state estimate	𝑃-|-. This matrix provides an indicator of the performance of the observer after each 
measurement step. This indicator can be used to evaluate the performance of the monitoring strategy and 
thus the performance of the path planning.  

Combining equations (11) and (12) and applying the matrix inversion lemma, the covariance of the estimation 
can be expressed as 

 𝑃-|- = d𝑃-|-,(	,( + 𝐶-/𝑅-,(𝐶-f
,(. (13) 

   
In order to provide a more tractable expression of this measure of performance, let us consider the Fisher 
Information matrix 𝑌- .	This matrix indicates the quantity of information associated to each variable, and for 
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the case of a linear system, is equivalent to 𝑌-|- = 𝑃-|-,(  [42]. Given this property, the post-information matrix 
of the estimator can be obtained as 

 𝑌-|- = 𝑃-|-,(	,( + 𝐶-/𝑅-,(𝐶- , (14) 
   

providing an expression where the performance of the estimation is given by the linear combination of the 
previous information and the sensing structure of the system.  

It is worth to notice that, thanks to the statistical properties of the Linear Kalman Filter, the information 
matrix defined in (14) depends only on the information at time 𝑘 − 1 and the sensing structure to be used at 
time 𝑘. This allows to compute this matrix, and therefore a suitable performance indicator, beforehand, given 
the sensing configuration. Interestingly, this fact can be used to evaluate and select the optimal sensing path 
of the mobile sensors as an optimization problem without the need of an online implementation.   

Note that the matrix 𝑅- ∈ 	ℝi!×i!  is assumed to be a diagonal matrix. Therefore, the Fisher information 
matrix (14) can be expressed as 

 
𝑌-|- = 𝑃-|-,(	,( +|

𝐶-,*/ 𝐶-,*
𝑟-,*

i!

*:( 	

		

, 
 
(15) 

   
where 𝑟-,* 	is the 𝑖-th diagonal entry of the matrix 𝑅- and 𝐶-,*  is the observation matrix when only the 
measurement of the 𝑖th entry is available. Considering the two sources of measurements, from fixed and 
mobile sensors, we can derive the following expression 

 
𝑌-|- = 𝑃-|-,(	,( +|𝐶6,*/ 𝑅6,*,(𝐶6,*

H

*:(

+|𝛾-,*(𝐶;,*/ 𝑅;,*,(𝐶;,*)
H

*:( 	

		

, 
 
(16) 

 

where 𝐶6,* 	represents the observation matrix 𝐶		whose only non-zeros entries belong to the fixed 
measurements of the area 𝑖 and, similarly, 𝐶i,*  denotes the matrix 𝐶	with entries associated to the UAV 
measurements in the 𝑖-th area. In this way, the information matrix is defined as a function of the binary 
variable 𝛾-,*  and therefore, the areas visited by the UAV. 

A common approach to evaluate the performance of the state estimation is to compute the trace of the 
covariance matrix. However, in the case of the Fisher information matrix, as stated in [43], its trace does not 
distinguish the gains based on the value of the eigenvalues, and therefore, it fails to provide an appropriate 
measurement of the information. 

In this work, we propose the use of the minimum eigenvalue of the Fisher information matrix to determine 
the performance of the estimation process. By doing so, the less informative areas are prioritized during the 
path computation of the mobile sensing. This condition can be expressed based on the variable 𝛾-,*  as 
following 

 max
m,k!

				𝛼 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝑃-|-,(	,( + ∑ 𝐶6,*/ 𝑅6,*,(𝐶6,*H
*:( +∑ 𝛾-,*(𝐶;,*/ 𝑅;,*,(𝐶;,*)H

*:( 	
		 ≥ 𝛼𝐼 

 
(17) 
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where the measurement areas are selected such that the minimum eigenvalue of the information matrix is 
maximized. The main merit of (17) is to define the selection of the sensed areas that maximize the 
performance of the observer as an offline optimization problem. 

 

2.4 Information-based orienteering path planning 
This section presents a variant of the Orienteering Problem where (17) is augmented with the limitations in 
terms of flight time and continuity of a path planning problem. The main difference between the proposed 
approach and the usual sensor selection problem lies in the fact that the set of chosen points must satisfy 
the constraints of a feasible path for the UAV. 

In this work, the UAV is seen as a point mass particle whose kinematics are the ones of a single integrator 
with a maximal speed 𝑉h > 0. This vehicle is assumed to have a maximum autonomy 𝑇;c@ > 0 which is not 
affected by the different maneuvers performed during the flight.  On the basis of our first testing campaign 
in our usual operative condition this assumption is a fair approximation of reality as long as sudden changes 
of altitude are avoided. Accordingly, the path followed by the UAV during the remote sensing can be defined 
by a set of straight lines between the different waypoints at the maximum speed allowed for the collection 
of data. The problem of selecting these waypoints can consequently be addressed as an Orienteering 
Problem. 

2.4.1 Area characterization 
The Orienteering Problem considers the case where, due to time or autonomy limitations, we have to select 
the points to visit as well as in which order for a given set of points. These points, in the case of remote 
sensing, are the points where the measurements are taken. To ensure the quality of the measurements and 
the post-process operation, the measurement triggering points must follow certain spatial distribution. To 
do so, the surface to be estimated is considered as an undirected and connected graph 𝐺 =< 𝑉, 𝐸 > . The 
set of vertices or nodes, 𝑉,  represents the centroids of the areas in which the plane is divided and the set of 
edges 𝐸 represents the allowed trajectories of the UAV.  Consequently, the graph 𝐺 creates a regular grid 
covering the whole area of interest which is represented in Error! Reference source not found.15. 

 

Figure 15 - Example of the regular grid obtained for a monitored area 

For the definition of a proper flight mission, the take-off and a landing points must be determined before 
each flight. Due to the time limiting constraint, the selection of an initial and final point as part of the regular 
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grid would bias the resultant path, narrowing down the covered area. To avoid this problem, two external 
nodes 𝑉*)*  and 𝑉6*) with directed edges and connected to all vertices are added to the preliminary graph. 
This creates an  extended graph 𝐺∗where the first measuring point is not necessarily an adjacent node to the 
takeoff coordinates but part of the most critical area to cover. This concept can be seen in Error! Reference 
source not found.16. 

 

Figure 16 - Schema of the graph distribution 𝐺∗. 

The edges (𝑖, 𝑗) ∈ 𝐸 have an associated weight 𝑡*+  representing the time to travel from vertex 𝑖 to vertex 𝑗. 
The use of time costs allows the consideration of different speeds during the flight. That is precisely the 
case of the first and last edge covered, where a higher speed can be considered as there is no sensing 
constrained related to them. 

2.5 Orienteering problem formulation 
In this subsection, following an approach inspired by the Miller-Tucker-Zemlin (MTZ) formulation of the TSP 
[44], the Orienteering Problem structure of the monitoring policy is formulated based on linear integer 
constraints. 

Let us introduce two kind of decision variables; i) the binary variable 𝑞*+  whose value is 1 if the edge 𝑗 is 
visited after the edge 𝑖, being 0 otherwise and ii) the integer variable 𝑢*  which denotes the visiting order of 
the node 𝑖. 

The choice of an initial and final point is enforced by the following constraints 

 
|𝑞(*

H

*:<

= | 𝑞+H

H,(

*:(

= 1, 
 
(18) 

 

 
|𝑞*(

H

*:<

= | 𝑞H+

H,(

*:(

= 0. 
 
(19) 
 

For the rest of nodes, we must ensure that each node is visited at most once and that the path obtained is 

 
|𝑞*-

H

*:<

= | 𝑞-+

H,(

*:(

	≤ 1			∀𝑘 = 2,… ,𝑁 − 1. 
 
(4020) 
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Due to the restricted flight time, it is necessary to establish a maximum travelling time constraint, which is 
denote by 

 
|	
H

*:<

| 𝑡*+𝑞*+

H,(

*:(

≤ 𝑇;c@ , 
 
(21) 
 

where	𝑇;c@ is the maximum time given by the autonomy of the UAV. To avoid possible subtours and to 
ensure the continuity of the path, it must hold that 

 2 ≤ 𝑢* ≤ 𝑁					∀𝑖 = 2,… ,𝑁, (22) 
 

 𝑢* − 𝑢+ + 1 ≤ (𝑁 − 1)(1 − 𝑞*+)					∀𝑖, 𝑗 = 2,… ,𝑁, (23) 
 

These constraints ensure the feasibility and continuity of the selected path for the UAV flight. In this regard,  
Figure 17 shows two examples of feasible and continuous paths. 

Note that the fact of sensing the 𝑖th area at time 𝑘, previously introduced as 𝛾*- = 1, is equivalent to the 
condition ∑ 𝑞*+ = 1	

+∈H. ,  where 𝑁*  denotes the set of edges with an existing link to 𝑖. Therefore, combining 
the path planning integer constraints (18)-(23) with (17), where 𝛾*- 	is now represented by ∑ 𝑞*+	

+∈H. , we 
obtain the following optimization problem 

 max
m,k!

				𝛼 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝑃-|-,(	,( +∑ 𝐶6,*/ 𝑅6,*,(𝐶6,*H

*:( +∑ 𝛾-,*(𝐶;,*/ 𝑅;,*,(𝐶;,*)H
*:( 	

		 ≥ 𝛼𝐼 
 

|𝑞(*

H

*:<

= | 𝑞+H

H,(

*:(

= 1 

 

|𝑞*(

H

*:<

= | 𝑞H+

H,(

*:(

= 0, 

 

|𝑞*-

H

*:<

= | 𝑞-+

H,(

*:(

	≤ 1			∀𝑘 = 2,… ,𝑁 − 1 

 
 

 
 
 
 
 
 
 
 
(44) 

Figure 17: Examples of feasible paths Figure 17 - Examples of feasible paths 
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|	
H

*:<

|𝑡*+𝑞*+

H,(

*:(

≤ 𝑇;c@ 

 
 

2 ≤ 𝑢* ≤ 𝑁					∀𝑖 = 2,… ,𝑁, 
 

𝑢* − 𝑢+ + 1 ≤ (𝑁 − 1)(1 − 𝑞*+)					∀𝑖, 𝑗 = 2,… ,𝑁, 
 

𝑞*+ ∈ {0,1}			∀𝑖, 𝑗 = 2,… ,𝑁. 
 
 

With this formulation, the information-based path planning is expressed as a Mixed-Integer Semidefinite 
Programming (MISDP) problem. A MISDP problem that can be optimally solved using commercial solvers, 
e.g. SCIP or cutsdp [45], [46]. Nevertheless, it remains a NP-hard problem whose solving time grows 
excessively in the case of large instances of the problem.  

2.6 Proposed heuristic 
In this section we propose two preliminary heuristic methods to compute a suboptimal path based on the 
integer relaxation of the mixed-integer problem (44). The goal is to obtain close-to-optimal strategies more 
adequate for large-scale scenarios. 

Consider 𝑞*+ ∈ [0,1] and 𝑢* ∈ ℝ subject to 

 2 ≤ 𝑢* ≤ 𝑁;					∀𝑖 = 2,… ,𝑁, 
 

(24) 

the problem (44) becomes a Semi-Definite Programming (SDP) problem, which can be effectively and quickly 
solved by solvers such as Mosek [47]. 

The outcome of this convex problem, 𝑞*+U , provides values between 0 and 1 for the edge , see Figure18,  which 
can be seen as how likely is the edge (𝑖, 𝑗) to be taken in the optimal path. Therefore, a suboptimal solution 
can be obtained by computing heuristics which select the points to visit based on these values [48]. 

 

Algorithm IV selects the path by rounding up each link (𝑖, 𝑗) with probability 𝑞*+U . This greedy approach inserts 
the new edges into the path based on their probability to be part of the optimal solution. To ensure that the 
obtained path is feasible and continuous, the rounding is done sequentially. The algorithm starts from the 

Figure 18: Example of a possible solution of the relaxed problem. Figure 18 - Example of a possible solution of the relaxed problem. 
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initial point 𝑉*)* 	adding edges until the maximum flight time 𝑇;c@	is reached. This process is depicted in 
Figure 19. 

 

Algorithm IV: Sequentially edge randomized rounding 

To converge to a close-to-optimal solution, the operation is repeated for a fixed number of 𝑁 iterations. After 
each iteration, the minimum eigenvalue associated to the computed path, 𝜆((𝑋=c2E), is compared with the 
previously stored solution. If the new path improves the current stored sequence, the latter is replaced, and 
the algorithm keeps seeking for alternative paths. 

 

 

Algorithm V uses a similar approach focusing, instead, on the probability of selecting given nodes. For this 
purpose, the values obtained from the SDP problem are moved towards the nodes as an equivalent of a 
reward value. After the solutions 𝑞*+U  are obtained, the reward  𝜃* 	for  𝑖 ∈ 𝑉 is computed as 

 
𝜃* = | 𝑞+*U

	

+∈H.

			∀𝑖 ∈ 𝑉 
(46) 

6

The outcome of this convex problem, q
r

i j
, provides values

between 0 and 1 for the edge , see Fig. 5, which can be seen
as how likely is the edge (i, j) to be taken in the optimal
path. Therefore, a suboptimal solution can be obtained by
computing heuristics which select the points to visit based
on these values [32].

Algorithm 1 selects the path by rounding up each link
(i, j) with probability q

r

i j
. This greedy approach inserts the

new edges into the path based on their probability to be part
of the optimal solution. To ensure that the obtained path is
feasible and continuous, the rounding is done sequentially.
The algorithm starts from the initial point Vini adding edges
until the maximum flight time Tmax is reached. This process
is depicted in Fig. 6.

Fig. 5: Example of a possible solution of the relaxed problem.

To converge to a close-to-optimal solution, the operation is
repeated for a fixed number of N iterations. After each itera-
tion, the minimum eigenvalue associated to the computed path,
l1(Xpath), is compared with the previously stored solution. If
the new path improves the current stored sequence, the latter is
replaced and the algorithm keeps seeking for alternative paths.

Algorithm 1 Sequentially edge randomized rounding
Input: Solution Grel

Output: Set of edges Xpath where l1(Xpath) is maximized
1: Xpath /0
2: for it  N do

3: Xtemp /0
4: i ini % Start from initial node ini

5: repeat

6: Select qi j by rounding adjacent edges
7: Xtemp qi j

8: i j % Move to next node i

9: until (Ttemp � Tmax)
10: return Xtemp

11: if l1(Xtemp)� l1(Xpath) then

12: Xpath Xtemp

13: end if

14: end for

15: Output Xpath

Algorithm 2 uses a similar approach focusing, instead, on
the probability of selecting given nodes. For this purpose, the
values obtained from the SDP problem are moved towards the
nodes as an equivalent of a reward value.

After the solutions q
r

i j
are obtained, the reward qi for i 2V

is computed as
qi = Â

j2Ni

q
r

ji
8i 2V (26)

where Ni represents the set of nodes that have an edge towards
the node i. By performing this operation, we obtain a reward
for the visit of each node based on the relaxed problem. The
main idea behind this second heuristic is to prioritize the nodes
with multiple high valued edges.

The insertion of nodes in the final path is done by following
a randomized rounding similar to the one used in Algorithm 1.
Therefore, once a node is selected, the next iteration chooses
within the neighbouring nodes Ni. The process is repeated for
N iterations, comparing the stored values once Tmax is reached,
and starting the process again from the initial node.

Algorithm 2 Sequentially node randomized rounding

Input: Reward q 2 RN and graph G
⇤

Output: Set of edges Xpath where l1(Xpath) is maximized
1: Xpath /0
2: for it  N do

3: Xtemp /0
4: i ini % Start from initial node ini

5: repeat

6: Select Vj 2 Ni based on q j

7: Xtemp qi j

8: i j % Move to next node i

9: until (Ttemp � Tmax)
10: return Xtemp

11: if l1(Xtemp)� l1(Xpath) then

12: Xpath Xtemp

13: end if

14: end for

15: Output Xpath

VI. COMPUTATIONAL ANALYSIS OF THE HEURISTICS

This section presents a study of the scalability, accuracy
and computational performance of the two presented heuristics
respect to the optimal formulation (24).

Simulations are performed given different size areas, rang-
ing from grids of 4⇥4 up to 6⇥6 nodes. In order to obtain
meaningful results, for each problem size, 100 simulations
have been performed varying the information distribution of
the process.

For this test, the autonomy of the vehicle is such that it
allows to visit a maximum of 6 to 9 nodes depending on the
size of the grid. This constraint allows to obtain representative
differences between the solutions.

Table I provides the level of degradation from both heuris-
tics respect to the optimal value. It is noticeable that both
heuristics are able to obtain results with less than 5% of
degradation respect to the optimal, while providing outper-
forming results in terms of computational time, as it is shown
in Table II.

Table II depicts the average time used to obtain the solution
to the path-planning problem. In this case, for more than 36

Figure 19 - One step of the randomized rounding algorithm. Figure 19 - One step of the randomized rounding algorithm 
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where 𝑁*  represents the set of nodes that have an edge towards the node 𝑖. By performing this operation, 
we obtain a reward for the visit of each node based on the relaxed problem. The main idea behind this second 
heuristic is to prioritize the nodes with multiple high valued edges. 

The insertion of nodes in the final path is done by following a randomized rounding similar to the one used 
in Algorithm IV. Therefore, once a node is selected, the next iteration chooses within the neighboring nodes  
𝑁*. The process is repeated for  𝑁		iterations, comparing the stored values once  𝑇;c@	is reached, and starting 
the process again from the initial node. 

 

Algorithm V: Sequentially node randomized rounding 

 
2.6.1 Computational analysis of the heuristics 
This section presents a study of the scalability, accuracy and computational performance of the two 
presented heuristics respect to the optimal formulation (44). Simulations are performed given different size 
areas, ranging from grids of 4 × 4 up to 6 × 6 nodes. In order to obtain meaningful results, for each problem 
size, 100 simulations have been performed varying the information distribution of the process. For this test, 
the autonomy of the vehicle is such that it allows to visit a maximum of 6 to 9 nodes depending on the size 
of the grid. This constraint allows to obtain representative differences between the solutions. Table V 
provides the level of degradation from both heuristics respect to the optimal value. It is noticeable that both 
heuristics are able to obtain results with less than 5% of degradation respect to the optimal, while providing 
outperforming results in terms of computational time, as it is shown in Table VI. 

Grid size Algorithm 1 Algorithm 2 
4 × 4 4.80 % 4.74% 
5 × 5 3.82% 3.95% 
6 × 6 3.46% 3.75% 

Table V: Solution degradation between the two proposed strategies and the optimal. 

Table VI depicts the average time used to obtain the solution to the path-planning problem. In this case, for 
more than 36 nodes (a grid of 6 × 6) we can observe how the computational time for the mixed-integer 
formulation of the problem already increases in an excessive manner. However, for both heuristic strategies, 
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The outcome of this convex problem, q
r

i j
, provides values

between 0 and 1 for the edge , see Fig. 5, which can be seen
as how likely is the edge (i, j) to be taken in the optimal
path. Therefore, a suboptimal solution can be obtained by
computing heuristics which select the points to visit based
on these values [32].

Algorithm 1 selects the path by rounding up each link
(i, j) with probability q

r

i j
. This greedy approach inserts the

new edges into the path based on their probability to be part
of the optimal solution. To ensure that the obtained path is
feasible and continuous, the rounding is done sequentially.
The algorithm starts from the initial point Vini adding edges
until the maximum flight time Tmax is reached. This process
is depicted in Fig. 6.

Fig. 5: Example of a possible solution of the relaxed problem.

To converge to a close-to-optimal solution, the operation is
repeated for a fixed number of N iterations. After each itera-
tion, the minimum eigenvalue associated to the computed path,
l1(Xpath), is compared with the previously stored solution. If
the new path improves the current stored sequence, the latter is
replaced and the algorithm keeps seeking for alternative paths.

Algorithm 1 Sequentially edge randomized rounding
Input: Solution Grel

Output: Set of edges Xpath where l1(Xpath) is maximized
1: Xpath /0
2: for it  N do

3: Xtemp /0
4: i ini % Start from initial node ini

5: repeat

6: Select qi j by rounding adjacent edges
7: Xtemp qi j

8: i j % Move to next node i

9: until (Ttemp � Tmax)
10: return Xtemp

11: if l1(Xtemp)� l1(Xpath) then

12: Xpath Xtemp

13: end if

14: end for

15: Output Xpath

Algorithm 2 uses a similar approach focusing, instead, on
the probability of selecting given nodes. For this purpose, the
values obtained from the SDP problem are moved towards the
nodes as an equivalent of a reward value.

After the solutions q
r

i j
are obtained, the reward qi for i 2V

is computed as
qi = Â

j2Ni

q
r

ji
8i 2V (26)

where Ni represents the set of nodes that have an edge towards
the node i. By performing this operation, we obtain a reward
for the visit of each node based on the relaxed problem. The
main idea behind this second heuristic is to prioritize the nodes
with multiple high valued edges.

The insertion of nodes in the final path is done by following
a randomized rounding similar to the one used in Algorithm 1.
Therefore, once a node is selected, the next iteration chooses
within the neighbouring nodes Ni. The process is repeated for
N iterations, comparing the stored values once Tmax is reached,
and starting the process again from the initial node.

Algorithm 2 Sequentially node randomized rounding

Input: Reward q 2 RN and graph G
⇤

Output: Set of edges Xpath where l1(Xpath) is maximized
1: Xpath /0
2: for it  N do

3: Xtemp /0
4: i ini % Start from initial node ini

5: repeat

6: Select Vj 2 Ni based on q j

7: Xtemp qi j

8: i j % Move to next node i

9: until (Ttemp � Tmax)
10: return Xtemp

11: if l1(Xtemp)� l1(Xpath) then

12: Xpath Xtemp

13: end if

14: end for

15: Output Xpath

VI. COMPUTATIONAL ANALYSIS OF THE HEURISTICS

This section presents a study of the scalability, accuracy
and computational performance of the two presented heuristics
respect to the optimal formulation (24).

Simulations are performed given different size areas, rang-
ing from grids of 4⇥4 up to 6⇥6 nodes. In order to obtain
meaningful results, for each problem size, 100 simulations
have been performed varying the information distribution of
the process.

For this test, the autonomy of the vehicle is such that it
allows to visit a maximum of 6 to 9 nodes depending on the
size of the grid. This constraint allows to obtain representative
differences between the solutions.

Table I provides the level of degradation from both heuris-
tics respect to the optimal value. It is noticeable that both
heuristics are able to obtain results with less than 5% of
degradation respect to the optimal, while providing outper-
forming results in terms of computational time, as it is shown
in Table II.

Table II depicts the average time used to obtain the solution
to the path-planning problem. In this case, for more than 36
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as Error! Reference source not found.20 shows, they provide reasonable computational times even for larger 
cases with more than 150 nodes. 

 

Grid size Algorithm 1 (s) Algorithm 2 (s) Optimal (s) 
4 × 4 1.96 1.83 8.12 
5 × 5 1.91 1.77 169.06 
6 × 6 2.20 1.72 372.58 
6 × 6 2.24 2.19 >3600 

Table VI: Comparison computational time between the optimal and the two proposed strategies. 

 

Figure 20 - Evolution of the computational time for the different methods 

These results show that both heuristics, while providing sub-optimal results, achieve a level of performance 
interestingly close to the optimal. Furthermore, their low computational times are promising in their use in 
large-scale scenarios. 

2.7 Simulation results and application 
This section provides, through numerical simulations, an illustration of the effectiveness of the information-
based path planning introduced. To do so, the adaptability of the path, the evolution over time and the 
performance are analyzed and compared against a traditional covering strategy. The numerical setting used 
for the numerical validation mimics the experimental setting proposed in the PANTHEON project. This model 
was originally presented in [49]. In this setup, we consider fixed soil sensors distributed in some areas of the 
orchard and the use of an agrometeorological IoT network which provides climate measurements in real 
time. For an orchard of 𝑛 plants and divided into 𝑁 soil parcels, the following system is considered 

 Ò𝑥-G( = 𝐴𝑥- + 𝐵9𝑑-ø +𝑤-
𝑦- = Γ-(𝐶-𝑥- + 𝑣-)

  
(25) 
 

where 𝑥 = [𝑥(/ 	𝑥</ 	𝑥?/]/ 	 ∈ 	ℝHG<) is the state vector with 𝑥( = [𝜃(, … , 𝜃H]/ 	the soil moisture status, 𝑥< =
[𝑊(, … ,𝑊H]/ 	 the water plant status and 𝑥? = d𝑊U.;,(, … ,𝑊U.;,Hf

/
the water status of the leaves, 𝑢- 

represents the irrigation inputs and 𝑑-ø	the meteorological disturbances. 
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In this context, while the distributed soil sensors are able to capture the value of soil moisture for the 
deployed areas, it is assumed that the water status of the leaves can be directly obtained through remote 
sensing thanks to the use of UAV covering. For further information about the model, the reader is referred 
to [49]. 

2.7.1 Adaptability of the path planning 
In this section, the proper performance of the path planning is demonstrated. To do so, simulations are 

carried out while modifying the disposition of the ground sensors and considering multiple days of sensing.  

In Error! Reference source not found., depicted by blue points, two different soil sensor distributions are 
presented. In this setup, the areas close to the fixed sensors have more information about the water states 
than the more isolated areas. Therefore, changing the location of the sensors must change the information 
distribution regarding the estimation of the states [32] and thus the optimal covering path. The paths 
obtained for both distributions are depicted in Error! Reference source not found.22. These results show 
how the optimal path correctly changes according to the sensor restructuring.  Regarding the use of previous 
information, a small area of an orchard has been simulated for a longer period. The resulting paths are 
depicted in Error! Reference source not found.23 where successive flights are performed in between periods 
of time preserving the same fixed sensor distribution. As it can be seen from the four plots, the areas with 
less information change accordingly to the already covered points and so does the path, demonstrating the 
spatial and temporal awareness of the presented strategy. 

Figure 21- Fixed sensor distributions 

Figure 22 - Comparison of the obtained path according to the soil sensor distribution. 
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Figure 23 - Iterative path evolution 

 

Remark: 

The variation of the path respect to the fixed sensors distribution or the previous measurements depends on 
the dynamics of the system and the choice of the covariance matrices of the Kalman Filter. 

2.7.2 Performance analysis 
In this subsection, an iterative implementation of the presented path planning strategy is compared against 
a common strategy in persistent monitoring. This strategy divides the area into equal number of partitions 
based on the flight autonomy which are sequentially covered, ensuring the minimum latency in between 
visits. To obtain a fair comparison, all strategies provide the observation matrix 𝐶- to a Kalman filter with 
identical parameters. The maximum flight time considered is also common to all of them. By doing so, the 
evaluation focuses on the best path strategy assuming the same state estimation process. The model is 
simulated for 350 hours and the data used for the meteorological disturbances comes from direct 
measurements from the experimental field. Stochastic flights are performed within a range from 35 to 70 
hours, taking into consideration logistics and weather uncertainty. 
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Figure 24 - Evolution of the minimum eigenvalue of the information matrix in a grid of 6	 × 6 nodes. 

Firstly, to include the performance of the optimal strategy proposed in (44), a simulation for a simpler grid 
of 6 × 6 nodes is performed. In Figure 24, the evolution of the minimum eigenvalue of the information 
matrix is shown. In this figure, the traditional strategy is referred as Arbitrary division and the heuristic 
shown corresponds to the Algorithm IV. From this plot, it can be seen that the presented strategies, 
optimal and suboptimal, clearly provide better results than the regular division. It is also important to 
notice how the optimal formulation presents some instants underperforming the heuristic strategy 
(Algorithm IV). This is due to the myopic approach followed in the development of the formulation, which 
can lead to less favorable situations in the case of short or regular periodicity in the remote sensing.  

 

Figure 25 - Ratio between the performance obtained for the different strategies. 

Error! Reference source not found., depicts the results obtained from a larger scenario, where the area 
dimensions correspond to a real case of large-scale hazelnut orchards, as shown in Error! Reference source 
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not found.. In this case, the values represented in the plot denote the ratio between the performance of the 
proposed strategies and the regular division of the area which is computed as 

 𝑅(𝑡) =
𝜆(,E.VU(𝑡)
𝜆(,cUo2(𝑡)

 

 

 
(26) 

where 𝜆((𝑡) represents the minimum eigen value at time 𝑘	of the Fisher information matrix associated to 
each strategy. Error! Reference source not found.27 provides, for a similar setup, the case where the 
maximum flying time for the information-based strategy is reduced by 50%. From this plot, it can be seen 
that after reducing by 50% the resources, the information-based strategy is still able to outperform most of 
the time the regular coverage strategy. 

 

Figure 26 - Area considered for the simulation. 

This result supports one of the main claims of this contribution, which is that an information-based approach 
can help to reduce the resources put into the monitoring while keeping a similar performance. The results 
presented in this section demonstrate that, for a limited amount of flying time and using the same estimation 
methodology, the use of the proposed information-based path planning is able to improve the information 
regarding the estimation of the states. Additionally, besides the myopic approach thought for single and 
isolated missions, this last subsection shows how an iterative implementation provides interesting results. 

Remark: 

The results shown in this subsection are obtained in the case of a static sensor distribution and with a fairly 
symmetric structure. In the case of less symmetric structures or changing distribution the difference between 
the two approaches becomes larger and even more significant. 
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Figure 27 - Evolution of the ratio of performance. Case with reduction of 50% in flying time for the information-based approach. 
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3 Reference to Media Content 
3.1 Unmanned Ground Vehicle  

Title Description URL 
UGV Field Validation Experimental Validation of the UGV Platform https://youtu.be/57Pa9xu2Ivs  

   
 

3.2 Unmanned Aerial Vehicle 
Title Description URL 

UAV Field Validation Experimental validation of the UAV Platform https://youtu.be/RU1eR1uzCuc  
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