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Abstract. In this paper the Carrier-Vehicle Travelling Salesman Prob-
lem (CV-TSP) is extended to the case of 2 carriers and one small vehicle.
The paper defines a minimum-time trajectory mission plan for the visit
of a group of target points by the small vehicle. In this scenario the main
goal is to optimize the use of both carriers as a support of the vehicle.
A Mixed-Integer Second Order Conic Programming (MISCOP) formu-
lation is proposed for the case of a given order of visit. Additionally, the
authors develop a fast heuristic which provides close to optimal results
in a decent computational time. To end the paper several simulations are
computed to show the effectiveness of the proposed solution.

1 Introduction

Over the past few years, the use of autonomous systems is experiencing a tremen-
dous rise. As a result, the tasks and applications envisioned for this kind of
systems are gaining in complexity and importance. Current rescue missions, lo-
gistics and transportation activities require such a wide range of capabilities
-large autonomy, small size and maneuverability- that they cannot be provided
by a single class of vehicle. Alternatively, the combination of different class plat-
forms represents a more adequate solution to reach the specifications demanded
[1].

While the coordination of several units of homogeneous vehicles has been
widely developed and many complex applications are already established [2, 3],
the research work in heterogeneous systems is still at an early stage. In recent
years, different research groups have studied the Traveling Salesman Problem
applied to a team of heterogeneous vehicles. The Multi-Depot Heterogeneous
Fleet Routing Vehicle Problem [4] considers the use of vehicles with different
capacities and speeds to solve a routing problem. In [5], influenced by the current
rise of drone applications, the last mile delivery problem is solved using a TSP
approach for a group of drones while deployed by a truck with a fixed route.

Another recent contribution to this field is the Carrier-Vehicle Travelling
Salesman Problem (CV-TSP) [6]. This variant of the TSP presents as a novelty
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the use of two different vehicles, a fast small vehicle and a slow carrier, which
are combined to perform different missions. The CV-TSP considers the scenario
where a fast vehicle with limited endurance is transported and serviced by a
slower carrier. The authors define a mathematical model of a carrier-vehicle sys-
tem dynamics and the associated constraints. An optimal trajectory calculation
connecting two points is provided, followed by a generalization of the problem
to the visit of set of points obtaining a first sub-optimal solution. In [7] a first
exact solution method for the CV-TSP was proposed. This problem, originally
thought for rescue missions, rapidly demonstrated the applicability in other fields
as logistics or transportation problems[8, 9].

More recently, [10] extends the CV-TSP and proposes the case of 2 vehi-
cles and one carrier. This extension of the original problem is motivated by
cooperative search and reconnaissance missions in heterogeneous robot systems.
Moreover, it can be easily proved that a larger group of heterogeneous vehicles
for visiting a given set of target points will always result in a solution (i.e. total
travel time) lower or equal than the one of a heterogeneous team of 2 vehicles.
This work also provides a first non-linear formulation and good results using a
deep learning approach.

In this paper we introduce a novel extension of the CV-TSP to the case of
two carriers and one single vehicle. In the described scenario, the small vehicle
can choose indistinctly between both carriers to land and be serviced. Equiva-
lently to [10], this variant always provides a faster mission time that the original
case. It should be noticed that this complementary extension remains interesting
as it includes a whole new group of additional applications. Such as the case of
maritime monitoring, where we can find examples of single UAVs with multi-
ple cruise bases [11] or mobile self powered carriers with a single UAV flying
from one to another [12]. Another application example is encountered in the EU
project PANTHEON ”Precision farming of hazelnut orchards”. In this case, the
UAVs used for the orchard coverage have a limited autonomy and data storage.
There, the coordination in movement between an aerial vehicle and larger ground
robots to charge batteries and download data would increase the scalability of
the concept to large-scale plantations [13].

The remainder of the paper is organized as follows. In Section 2 the problem
is defined and an optimal mixed-integer formulation is proposed. In Section 3
a fast heuristic is presented for the case of large inputs. In Section 4 several
numerical results are shown. In Section 5 we finish with some conclusions and
future work.

2 Problem statement

The system studied is composed of two different types of vehicles: carriers that
are slow with a maximum speed Vc and unlimited endurance and small vehicles
that are faster with Vv ≥ Vc but have a limited endurance a ≥ 0. Both types
of vehicles can cooperate such that the carriers can deploy, recover, and service



Multiple Carrier-Vehicle Travelling Salesman Problem 3

the UAVs. Such a system composed by a single carrier and a single vehicle is
defined in detail in [14].

Consider a mission where the carrier-vehicle system is composed of one fast
vehicle and two carriers. The mission consists of the visit by the fast vehicle of an
ordered set Q = q1, . . . , qn of target points in the 2D plane. The aim is to define
the trajectories of the three vehicles such that the mission time completion is
minimized.

As shown in [14], it is enough to define the position of the system at the
take-off and landing points. Therefore, let us define xto,i ∈ R2 as the take-off
position for the target point i and xl,i ∈ R2 its landing position. Regarding the
carriers, it is worth to notice that xto,i is also the position of the carrier from
which the vehicle takes off, while yto,i ∈ R2 can be defined as the position of the
other carrier at the exact same instant. Similarly, xl,i represents the position of
the carrier on which the vehicle lands after visiting the i-th target points, while
yl,i ∈ R2 denotes the position of the other carrier. These variables allow to define
the position of the whole carrier-vehicle system all along the mission.

Fig. 1: Schematic of the Multiple carrier-vehicle salesman problem in a maritime sce-
nario.

The vehicle path in the case of such a team presents two kind of time intervals.
The time when the vehicle is on board of a carrier denoted by tl,toi , i = 1, . . . , n

and when the vehicle is airborne denoted by tto,li ,i = 1, . . . , n+ 1. Knowing that
the vehicle flight time is limited by the endurance a, the following constraints
must be satisfied:

0 ≤ tto,li ≤ a i = 1, . . . , n (1)

0 ≤ tl,toi i = 1, . . . , n+ 1 (2)

Each point visit is composed of two line segments: from vehicle take-off po-
sition xto,i to target point qi and from target point to vehicle landing position
xl,i ∈ R2, with i = 1, . . . , n. Assuming that the elapsed time at target point is
null, the following constraint must be considered:

‖xto,i − qi‖+ ‖qi − xl,i‖ ≤ Vvtto,li i = 1, . . . , n (3)
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Between landing and takeoff instants, the vehicle must remain on one of the
carriers. Therefore, during these periods it is considered as part of the carrier
system, moving with a maximum speed Vc, following that:

‖xl,i−1 − xto,i‖ ≤ Vctl,toi i = 1, . . . , n+ 1 (4)

‖yl,i−1 − yto,i‖ ≤ Vctl,toi i = 1, . . . , n (5)

where xl,0 = xc,0, yl,0 = yc,0 and xto,n+1 = xf .
In the case considered in this paper, after each takeoff, the vehicle can either

return to the carrier or land on the other one. This behaviour is denoted by the
binary decision variable αi with i = 1, . . . , n. This variable takes the value of 1
when the vehicle is landing on the same carrier, or 0 when it switches.

This behaviour can be denoted as follows

αi ∈ {0, 1} i = 1, . . . , n (6)

αi‖xto,i − xl,i‖ ≤ Vctto,li i = 1, . . . , n (7)

αi‖yto,i − yl,i‖ ≤ Vctto,li i = 1, . . . , n (8)

(1− αi)‖xto,i − yl,i‖ ≤ Vctto,li i = 1, . . . , n (9)

(1− αi)‖yto,i − xl,i‖ ≤ Vctto,li i = 1, . . . , n (10)

Since the goal of the mission is to minimize the total travelling time, the
solution is equivalent to the minimization of the sum of all time segments cor-
responding to the vehicle path phases. The optimization problem can be given
in the form of Mixed Integer Non-linear Programming (MINLP) problem as

minimize
α,x,y,t

(
n

Σ
i=1
tto,li +

n+1

Σ
i=1

tl,toi )

subject to (1)− (5), (6)− (10).

(11)

The non-linearity in constraints (7)-(10) makes the formulation complex to
solve with current solvers. However, similar to what is done in [15], it is possible
to rewrite constraints (7)-(10) as second order cone constraints, where THE
equivalent logical expression

(αi = 1)⇒ ‖xto,i − xl,i‖ ≤ Vctto,li (12)

can be reformulated as

‖xto,i − xl,i‖ ≤ Vctto,li + (1− αi)L i = 1, . . . , n . (13)

Similarly, the other constraints can be rewritten as

‖yto,i − yl,i‖ ≤ Vctto,li + (1− αi)L i = 1, . . . , n (14)

‖xto,i − yl,i‖ ≤ Vctto,li + αiL i = 1, . . . , n (15)
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‖yto,i − xl,i‖ ≤ Vctto,li + αiL i = 1, . . . , n. (16)

Therefore, the optimization problem is now given as follows

minimize
x

(
n

Σ
i=1
tto,li +

n+1

Σ
i=1

tl,toi )

subject to (1)− (5), (6), (13)− (16)

(17)

being a Mixed-Integer Second Order Conic Program (MISCOP) where L is a
large enough real positive number. An example of a solution for 10 points is
given in Figure 2.

Fig. 2: Example of a mission of 10 points

The L parameter has to be large enough but a too large value would in-
crease drastically the computational time [16]. Fortunately, this parameter has
a physical meaning illustrated in Figure 3 (for the case of αi = 0) in terms of
distance between vehicles. Therefore, given the characteristics of the problem,
it is possible to analytically determine the interval of Lmin such that the con-
straints (13), (14),(15) and (16) hold true. Figure 3 shows a configuration of
xto,i, xl,i, yto,i, yl,i and the corresponding interval of L. L1 and L2 are, respec-
tively, the minimum distances such that constraints (13) and (14) are no longer
active. The green point xL,2 corresponds to the worst case scenario in which the
distance ‖xto,i−xl,i‖ is maximal and equal to aVv. It corresponds to the case in

which tto,li = a. Similarly, the point yTO,2 corresponds to the worst case scenario
in which the distance ‖yto,i − yl,i‖ is maximal and equal to aVv + 2aVc.

Therefore, the parameter L can be computed beforehand as

Lmin = max(a(Vv + Vc), ‖xto,i − yto,i‖ i = 1, . . . , n) (18)
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Fig. 3: Illustration of minimum distance L for the constraints (13) and (14).

being convex problem easy to solve.

3 Proposed heuristic

The mixed-integer formulation proposed in (17) provides an optimal solution,
but given the NP-hard nature of the problem becomes computationally expensive
for large inputs. Hence, in this section we propose a fast heuristic able to solve
the problem with satisfactory results.

Given the integer relaxation of the constraint (6) as

0 ≤ αi ≤ 1 i = 1, . . . , n (19)

the resulting formulation

minimize
x

(
n

Σ
i=1
tto,li +

n+1

Σ
i=1

tl,toi )

subject to (1)− (5), (13)− (16), (19)

(20)

is a Second-Order Conic Programming (SOCP) problem, a kind of convex prob-
lem easy to solve. The presented heuristic takes this result as an input for a
rounding algorithm. The main idea behind the heuristic lies in the fact that the
solution from the relaxed problem (20) can be seen as a probability on the vari-
able α to be chosen 1. Therefore the final trajectory calculation takes the values
more likely to provide a better solution

However, since αi ∈ [0, 1], in constraints (13)-(16) the geometric meaning
of parameter L is lost. The solution and computational time becomes sensitive
to the value of L. Based on an empirical approach, the following formula was
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obtained:

Lapprox = 1.6d∗(
aVv
d∗

+ 0.068)(0.88− Vc
Vv

) (21)

where d∗ is the average length separating successive target points. This expres-
sion allows, depending on the configuration parameters of the problem, to select
a value of L that very likely provides a close to optimal solution. Being a first
tentative to define an appropriate value of L, the heuristic considers a range of
values of L with 20% and 40% deviation to avoid unexpected results.

The main steps of the heuristic are schematically represented as follows:

Given : X ={q, x0,c, y0,c, xf , a, Vv, Vc}
Find : xto,i yto,i xl,i yl,i α

1. Compute Lapprox with eq. (21)
2. Llist = Lapprox × [0.6, 0.8, 1, 1.2, 1.4]
3. For each Li in Llist

4. Solve relaxed SOCP problem (20)
5. get α
6. round α
7. Solve original problem (11) with rounded α
8. get fi
8. end
9. fheuristic = min({fi, : i = 1, . . . , 5})

4 Numerical results

This section shows different numerical simulations in terms of computational
time and optimality to compare the performance of the mixed-integer formula-
tion and the proposed heuristic. A series of randomized simulations have been
performed to compare the results with different points distributions. The simu-
lations have been using MOSEK v9.0.89 for the convex problems and GUROBI
solver for the mixed-integer problems, both in YALMIP environment.

Figure 4 represents the level of degradation ∆ of the heuristic solution related
to the optimal solution among 500 simulations. Due to the computing time of
the mixed-integer program the simulations considered only a set of 9 visit points.

In Table 1 and Table 2 the results from these simulations are detailed. It can
be seen how the average degradation of the solution respect to the optimal value
is only 2.47% and that 82% of the cases have less that 5% degradation.

A second comparison in terms of computational time was also carried out.
Figure 5 represents the evolution of computational times with respect to the
number of target points. The results show that the heuristic approach grows
linearly with the number of target points meanwhile the mixed-integer solution
drastically increase for more than 16 points.
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Fig. 4: Distribution of the level of degradation ∆ in the simulations.

N.of points Avg deg. Max deg.

9 2.47% 28.15%

Table 1: Degradation of the heuristic result respect to the optimal.

N. of points < 1% < 5% < 10% < 15%

9 53.8% 82.80% 95.20% 98.2%

Table 2: Results distribution regarding different degradation thresholds.
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Fig. 5: Comparison of computational time evolution with respect to the number of
target points.

These results support the clear advantage of the proposed heuristic when the
number of points becomes larger. Additionally, it shows the good performance
in terms of optimality.
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5 Conclusion

This paper introduces a novel extension of the Carrier-Vehicle Travelling Sales-
man Problem considering the use of two carriers. The presented results show
the advantages of the considered scenario and a proper way to formulate and
solve the problem. The problem and constraints are defined in a way that allows
to write it as Mixed-Integer Second Order Program (MISOCP) which provides
optimal results. Additionally, a simple and fast heuristic is also defined, which
is proved to have good results in terms of optimality and computational time.

The obtained results can be used for the planning of monitoring activities or
similar logistic problems involving a team of two carriers and one vehicle. Future
extensions could allow the faster vehicle to visit multiple points with a single
takeoff.
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