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Abstract—This paper focuses on the constrained control of
UAVs in geofencing applications. Although geofence systems are
becoming more attractive as a research topic, most works are
focusing on defining the boundaries of the admissible geograph-
ical region without addressing the control issues and boundary-
handling problems. In this paper, we propose a constrained
control scheme to steer an UAV to the desired position while
ensuring constraints satisfaction at all times. To do so, we
make use of the recently introduced Explicit Reference Governor
framework. The proposed scheme is validated through extensive
experimental studies carried out in a laboratory environment.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted the at-
tention of several researchers in the last decade as their
applications have significantly widened following technolog-
ical and theoretical improvements. In particular, UAVs are
nowadays widely used ine.g., surveillance [1], monitoring
[2], photography [3], agriculture [4], and search and rescue
missions [5]. As UAVs are increasingly used in our daily
life, regulations on flight operations have become crucial to
enforce safety and security of aerial missions. This necessitates
the development of technologies that allow UAVs to safely
navigate according to the regulations.

Geofencing is a technique that defines virtual boundaries in
a specific geographical area (see Fig. 1), which has recently
attracted some interest in the research community [6], [7]. In
the presented geofence systems, once the defined boundaries
are violated, the reaction is limited to alerting the pilot or
cutting the power of the UAV [8]. This obviously hampers the
efficiency of the geofence system.

From a technical viewpoint, preventing UAVs from violating
the boundaries defined by the geofence system can be con-
sidered as a constrained control problem. Constrained control
addresses the problem of enforcing constraints satisfaction at
all times while ensuring that control objectives are achieved.

Recently, the Explicit Reference Governor (ERG) scheme
was introduced as a solution to constrained control problems
[9]. The ERG scheme is anadd-on unit which suitably
modifies the derivative of the applied reference such that
constraints are enforced at all times. This scheme has been
proved to be effective in the field of aerial robotics [10]–[13],
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Fig. 1. Illustration of geofencing applications for UAVs.

due to its simplicity and low computational efforts compared
to optimization-based schemes (e.g.,Model Predictive Control
[14]).

The main goal of this paper is to bridge the gap between
geofencing applications for UAVs and the constrained control
concept. More specifically, this paper proposes a constrained
control scheme based on the ERG framework, which will
be applied to a UAV evolving in a constrained environment.
The scheme consists in two parts: (i) pre-stabilizing the UAV,
and (ii) using the Lyapunov theory to enforce constraints
satisfaction. To the best of the authors’ knowledge, no effective
work is presented in the literature on how to control UAVs
so to prevent them from violating the boundaries defined by
geofence systems. One of the most remarkable features of
ERG is that its very low computational efforts, which fits well
with geofencing applications.

This paper is organized as follows. First, the problem is
stated, the typical constraints in geofence systems are for-
mulated, and the main control objectives are defined. After-
wards, an ERG-based constrained control scheme is proposed.
Finally, the proposed scheme is validated through extensive
experimental studies carried out on anAR Drone.

II. PROBLEM STATEMENT

Consider a fixed propeller quadrotor of massm> 0 ∈ R

flying in a 3-D constrained environment. The UAV is subject
to the gravity forcegẑ1, and the generalized coordinates
are the position of the UAVp :=

[

px py pz
]T ∈ R

3, the

1The gravity acceleration isg = 9.81 [m/s2]. We define ˆz :=
[

0 0 1
]T

as the unit vector aligned with the gravity and we conventionally define ˆz as
pointing downwards.



velocity of the UAV ṗ :=
[

ṗx ṗy ṗz
]T ∈R

3, and the attitude
(quaternion) of the UAVq∈H. We assume the inputs of the
system to be the thrustT ≥ 0∈R and the desired quaternion
qC :=

[

qC,0 qC,v
]T ∈H, whereqC,0 ∈R andqC,v ∈R

3 are the
real and the imaginary parts ofqC, respectively. In this paper,
we use the classical model of a UAV presented in [15]. Since
in this model the dynamics of the attitude is independent of
the position dynamics, without loss of generality we assume
that the UAV attitudeq is already pre-stabilized to reachqC.

In general, in geofencing applications we have two types of
constraints (or boundaries):

1) Wall constraints: The constraints are a convex polytope
composed of the collection of linear inequalities as

W = {p | cT p+d ≥ 0}, (1)

wherec∈R
3×nw andd ∈R

nw, with nw ∈N0 the number
of wall constraints. This type of constraint represents the
boundaries of the authorized flying zone to avoid UAVs
entering illegal zones.

2) Obstacle constraints: The constraints defined for the
i-th obstacle are vertical infinite cylinders

O= {p | (px− xo,i)
2+(py− yo,i)

2 ≥ r2
i }, (2)

where i = 1, . . . ,no with no ∈ N0 the number of obsta-
cles,

[

xo,i yo,i
]T ∈ R

2 represents the center of thei-th
obstacle andr i ∈R

+
0 is its radius. This type of constraints

represents objects or zones that should be avoided, such
as skyscrapers, antennas, jails, and military installations.
Note that constraints (2) are located inside the bound-
aries defined by constraints (1).

The main goal of this paper is to utilize the so-called
ERG framework so to handle the constraints that exist in
geofencing applications. In particular, the UAV has to be
controlled such that, starting from a suitable initial position
p0 :=

[

p0,x p0,y p0,z
]T ∈ R

3, it safely tends to the desired

position pd :=
[

pd,x pd,y pd,z
]T ∈ R

3 without violating
constraints (1)-(2).

III. CONTROL ARCHITECTURE

This section discusses the development of a constrained
control scheme for geofencing applications in detail. The first
step is to pre-stabilize the system; then augmenting it with the
ERG to enforce constraints satisfaction. The complete scheme
is illustrated in Fig. 2.

A. Pre-stabilizing the UAV

This section proposes a control law for the inputsT andqC.
The position of the UAV can be stabilized using the control
law proposed in [12]. In particular, the thrustT is designed as

T = ‖F‖, (3)

where F :=
[

Fx Fy Fz
]T ∈ R

3 is the total required force
obtained through a Proportional-Derivative (PD) control law
with gravity compensation as

F =−Kp(p− pd)−Kd ṗ−mĝz, (4)

whereKp > 0∈R
3×3 andKd > 0∈R

3×3 are the proportional
and derivative gains, respectively.

For what concerns the tracking of the desired attitudeqC,
we use the following control law [12]:

qC,0 = cos
(α

2

)

, qC,v =
sin

(α
2

)

√

F2
x +F2

y

[

Fy −Fx 0
]T

, (5)

whereα = arctan
(√

F2
x +F2

y/Fz

)

.
Note that for sufficiently fast inner loop dynamics and using

the control law (3)-(5), it is possible to prove that the system
is asymptotically stable and that it becomes a linear system
[12]. In the following,(A,B,C,D) is a state-space realization
of the aforementioned pre-stabilized linear system.

B. ERG Implementation

Once the position and attitude of the UAV is stabilized,
the next step is to add the constraint-handling capability to
enforce constraints (1)-(2). This will be done by using the
ERG framework to generate the auxiliary referencev(t) ∈R

3

so that the trajectories of the pre-stabilized system are always
contained in a suitable invariant set. As shown in [16], an
intuitive choice for the invariant set is the invariant level set
defined by the Lyapunov theory. Thus, to ensure satisfaction
of constraints (1)-(2) at all times, it is sufficient to manipulate
the auxiliary referencev(t) so that the Lyapunov function is
always smaller than a suitably defined upper-bound. This can
be done by manipulating the auxiliary referencev(t) according
to the following differential equation

v̇(t) = ∆(x(t),v(t))ρ(pd(t),v(t)), (6)

with

∆(x(t),v(t)) = κ min
i
(Γi(v(t))−Vi(x(t),v(t))) , (7)

where κ > 0 is a tuning parameter, x(t) =
[

px(t) py(t) pz(t) ṗx(t) ṗy(t) ṗz(t)
]T ∈ R

6 is the
state of the pre-stabilized system, andi = 1,2 corresponds
to constraints (1) and (2), respectively. Also,∆(x(t),v(t))
and ρ(pd(t),v(t)) are the two fundamental components
of the ERG scheme, called the Dynamic Safety Margin
(DSM) and the Attraction Field (AF), respectively (see
Fig. 2). Note that Γi(v(t)), i = 1,2 is determined such
that Vi(x(t),v(t)) ≤ Γi(v(t)) implies that the corresponding
constraint is satisfied.

Using the invariant Lyapunov level set to build the DSM,
Γ(v(t)) can be interpreted as the maximum value of the
Lyapunov function such that the Lyapunov level set touches
the constraints (1)-(2) but does not violate them.

As shown in [9], determiningΓ(v(t)) at each time is an
optimization problem which usually needs to be solved on-
line. In general, an analytic solution does not exist for the
optimization problem. However, for some special cases of
Lyapunov functions and constraints, one can find an analytic
parameterized solution. In particular, for linear systems subject
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Fig. 2. Proposed ERG-based scheme for geofence applications.

to linear constraints (1) with a quadratic Lyapunov function
in the following form:

V(x(t),v(t)) =
(

x(t)− xv(t)

)T
P
(

x(t)− xv(t)

)

, (8)

whereP=PT > 0, andxv(t) ∈R
n denotes the equilibrium point

associated tov(t), it can be shown [16] that the optimalΓ(v(t))
can be determined as

Γ(v(t)) =
(

cTxv(t)+d
)2

cTP−1
w c

. (9)

wherePw is the solution of the following optimization prob-
lem:



















Pw = arg min log det(P)

s.t. ATP+PA≤ 0

P≥ ccT

P> 0

(10)

Also, in the case of quadratic Lyapunov functions, it can be
shown that for each obstacle given in constraints (2),Γ(v(t))
can be determined as [17]

Γ(v(t)) =

(

(

∇Oi |x̃v(t)

)T
(

xv(t)− x̃v(t)
)

)2

(

∇Oi |x̃v(t)

)T
P−1

(

∇Oi |x̃v(t)

)

. (11)

whereOi represents thei-th obstacle given in (2), and

x̃v(t) =−
xc,i − xv(t)

‖xc,i − xv(t)‖
r + xc,i (12)

with xc,i =
[

xo,i yo,i xv(t),3 0 0 0
]T

in which xv(t),3 is
the third entry ofxv(t).

For what regards the AF, it can be designed by decoupling
into an attraction and a repulsion term as

ρ(pd(t),v(t)) = ρa(pd(t),v(t))+ρr(pd(t),v(t)), (13)

where ρa(pd(t),v(t)) is a vector field which points towards
the desired position, andρr(pd(t),v(t)) is a vector field which

points away from the constraints. For the attraction term
ρa(pd(t),v(t)), the most intuitive choice is

ρa(pd(t),v(t)) =
pd(t)− v(t)

max{‖pd(t)− v(t)‖,η} , (14)

where η > 0 is a smoothing factor. The repulsion term
ρr(pd(t),v(t)) is split into two terms as

ρr(pd(t),v(t)) = ρr,1(pd(t),v(t))+ρr,2(pd(t),v(t)), (15)

where ρr,1(·) and ρr,2(·) are repulsion terms associated to
constraints (1) and (2), respectively. Repulsion terms can be
considered as

ρr,1(·) =max

{

ζ − cT p−d
ζ − δ

,0

}

c
‖c‖ , (16)

ρr,2(·) =
no

∑
i=1

max

{

ζ −φi + r i

ζ − δ
,0

}











px− x0,i

φi
py− y0,i

φi
0











, (17)

whereζ > δ > 0 and φi =
√

(px− xo,i)2− (py− yo,i)2. Note

that the repulsion terms (16)-(17) guarantee thatcT p+d ≥ δ
and (px− xo,i)

2+(py− yo,i)
2 ≥ (r i + δ )2 at all times.

IV. EXPERIMENTAL RESULTS

The proposed scheme is applied to anAR Droneof mass
m= 0.47[kg] using the control law (3) and (5) combined with
(6). The gainsKp andKd chosen for theAR Droneare given in
Appendix. Furthermore, for the experiments we have chosen
κ = 2, ζ = 0.5, andδ = 0.4.

The general setup of the experimental environment is il-
lustrated in Fig. 3. It consists of the optical motion capture
environmentOptitrack, where the softwareMotive computes
the position and the attitude of the flying object with the help
of eightFlex 13cameras updated with a frequency of 120 Hz.
These cameras can cover a flying space of 3.8 m× 3.8 m× 3
m in x, y, and z coordinates, respectively. The communication
betweenMotive and other client softwares is done through
UDP communication using theNatNet service. The packets
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are sent from the computer to the UAV through Wi-Fi using
the UDP protocol.

The UAV used in this paper is theParrot AR Drone 2.0. The
drone is fitted with five reflective markers in an asymmetric
way so thatMotive can distinguish the front from the back.
Regarding the constraints, a net and a PVC pipe are used to
represent constraints (1) and (2), respectively (see Fig. 4). For
the implementation of the proposed scheme, the programming
languagePythonis chosen because of its extensive use and the
availability of a great number of libraries. The source code is
available at [18].

Note that ˙p in (4) is not directly measured during the
experiments; so, a velocity estimator needs to be implemented.
For this purpose, we utilized a linear Kalman Filter (KF) [19]
with covariance matrices of process and observation noisesQ
andR, respectively. SinceMotiveprovides the precise position
of theAR Dronewith an error of about 1[mm], the covariance
matrix of observation noiseR is selected diagonal whose
elements are equal to 10−6. As for the covariance matrix of
process noiseQ, by assuming a diagonal structure, the entries
are tuned heuristically as 0.01. To validate the developed
KF experimentally, a pendulum with reflective markers (to
measure its position byMotive) was set up in the capture
arena, such that it can oscillate in the yz-plane (see [20] for
details). As seen in Fig. 5, the estimated position derived from
the estimated velocity obtained by the developed KF follows
properly the trend of the real position of the pendulum.

Since for linear systems one can easily find a quadratic
Lyapunov function in the form of (8), we use a black box mod-
eling approach to approximate the pre-stabilizedAR Drone
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Fig. 5. Experimental validation of the developed KF. Blue line: Real y-
position, Red line: Estimated y-position, Black line: Estimated velocity.
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Fig. 6. Validation of the approximated linear model for the ARDrone. Black
line: Desired position, Blue line: Real position, Red line: Position obtained
via identified linear model.

with a linear model to take advantage of the parametrized
Γ(v(t)) given in (9) and (11). For this purpose, we apply
several consecutive steps in all directions to the pre-stabilized
AR Drone. Then, the N4SID algorithm [21] is utilized to
obtain a linear approximation of the drone dynamics. This
results in a 6th-order state-space model withA, B, C, andD
matrices as given in Appendix. To validate the approximated
model, the real position of theAR Drone is compared with
the one obtained through the derived linear model. As seen
in Fig. 6, the variables obtained through the identified linear
model follow the trend of the real ones.

Regarding the construction of the Lyapunov function for
constraint (1), the problem (10) is solved with the tool-
box provided in [22]. For constraint (2), the corresponding
Lyapunov function is constructed by solving the Lyapunov
inequalityATPo+PoA+ I6 ≤ 0, whereI6 is the identity matrix
of dimension 6× 6. The matricesPw and Po are given in
Appendix.

To validate the proposed scheme experimentally, we con-
sider the two following case scenarios.
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Fig. 7. Experimental results for Scenario 1. The square, cross, and star
marks represent the take-off, admissible, and non-admissible desired positions,
respectively.

• Scenario 1: This scenario considers the case in which
the AR Drone is flying in an environment constrained
by a wall, where the admissible region ispx + py +
1 ≥ 0 (see Fig. 4). Starting from the initial position
p0 =

[

0 0 0
]T

, we first apply the desired reference

pd =
[

0 0 −1.2
]T

to take off. Then, after the drone is

stabilized, we applypd =
[

−0.5 0.5 −1.2
]T

, which
is inside the admissible region. As seen in Fig. 7, the
AR Drone can reach the desired position. Afterwards,
we applypd =

[

−1 −1 −1.2
]T

, which is outside the
admissible region. As expected, it moves towards the
desired position, but stops and hovers near the wall, while
minimizing the distance with the desired reference.

• Scenario 2: This scenario adds an obstacle of diam-
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Fig. 8. Experimental results for Scenario 2. The square and cross marks
represent the take-off and the desired positions, respectively.

eter 0.09 [m] placed inside the admissible region of
Scenario 1,i.e.,

[

xo yo
]

=
[

−0.6 0.6
]

(see Fig. 4).
Similarly to Scenario 1, we start from the initial posi-
tion p0 =

[

0 0 0
]T

, then apply the desired reference

pd =
[

0 0 −0.9
]T

to take off. After the stabilization
of the AR Drone, the next desired reference ispd =
[

−1 1.2 −0.9
]T

. Note that this reference is chosen
such that without using the proposed scheme, the drone
would move in a straight line making it collide with the
obstacle (see Fig. 4). As seen in Fig. 8, theAR Drone
moves accordingly and avoids colliding the obstacle and
the wall.

The videos of the aforementioned scenarios can be found
on https://wp.me/p9eDF3-8I.

https://wp.me/p9eDF3-8I


V. CONCLUSIONS

This paper has proposed a constrained control scheme based
on the ERG framework for geofencing applications. To verify
the effectiveness of the proposed scheme, we applied it to the
AR Droneflying in a constrained environment. Experimental
results demonstrated that the proposed scheme is effective for
the case of UAVs evolving in a bounded space in the presence
of obstacles. Future works will aim at extending the results to
other types of constraints (e.g.,non-convex class of constraints
and time-varying constraints).
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APPENDIX

COMPUTED MATRICES

Kp =





0.5 0 0

0 0.5 0

0 0 0.8



 , Kd =





0.5 0 0

0 0.5 0

0 0 0.4





A=

















−0.0703 0 0 0.9938 0 0

0 −0.064 0 0 0.9980 0

0 0 −0.0534 0 0 0.9923

−1.7872 0 0 −1.1057 0 0

0 −1.6302 0 0 −1.0044 0

0 0 −1.2956 0 0 −1.0573

















B=

















0.0616 0 0

0 0.0556 0

0 0 0.0532

1.5874 0 0

0 1.4382 0

0 0 1.2917

















C=





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



 , D =





0 0 0

0 0 0

0 0 0





Pw = 10−1

















5.0869 5.0981 0.0001 0.3446 0.3610 0.0001

5.0981 5.1194 0.0001 0.4039 0.4261 0.0002

0.0001 0.0001 0.0005 0.0004 0.0004 0.0004

0.3446 0.4039 0.0004 1.3942 1.4610 0.0006

0.3610 0.4261 0.0004 1.4610 1.5416 0.0007

0.0001 0.0002 0.0004 0.0006 0.0007 0.0008

















Po =

















1.0174 0 0 0.0689 0 0

0 1.0239 0 0 0.0852 0

0 0 0.0001 0 0 0.0001

0.0689 0 0 0.2788 0 0

0 0.0852 0 0 0.3083 0

0 0 0.0001 0 0 0.0002
















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